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A macroscopic model for a porous catalyst layer is derived from a microscopic description that includes the reduction of oxygen
in periodically distributed pores filled with liquid water. While specific transport equations are established for a cathode catalyst
layer in a PEM fuel cell, the same multi-scale approach would yield governing equations for other types of electrodes which
are mathematically analogous. Macroscopic transport characteristics such as porous media (corrector) tensors, Darcy’s law and
an effective Butler-Volmer equation, are inherently linked to the dynamics at the microscale and can be computed in a fairly
straightforward manner under the assumption of local thermodynamic equilibrium. In the case of periodic and strongly convective
flows, we also obtain so-called diffusion-dispersion relations, e.g. Taylor-Aris dispersion.
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As the world’s energy economy moves away from fossil fuels,
efficient electrochemical conversion of other types of fuel is becom-
ing increasingly important.12 While many factors determine the effi-
ciency of such processes, electrode design appears to be the dominant
element.22 Optimal electrode design is essential for many applications
and it has lately received particular attention in relation to energy con-
version devices such as batteries and fuel cells.

For polymer electrolyte membrane (PEM) fuel cells (FCs), the
focus lies on the design of efficient, cost effective and durable cata-
lyst layers (CLs),4 especially at the cathode side where the relatively
inefficient oxygen reduction reaction (ORR)

O2 + 4H+ + 4e− → 2H2 O [1.1]

takes place. Consequently, the cathode CL is responsible for the ma-
jor portion of voltage losses. Usually, it is a random porous medium13

whose material properties and performance characteristics are dic-
tated by its manufacturing process. A systematic optimization of this
multi-phase medium is extremely challenging, owing to a pore-size
distribution that can hardly be controlled which results in non-optimal
performance. Since PEMFC research and development should ideally
guide, and not be guided by, the production process in terms of geom-
etry, morphology and materials, there is a need to move toward new
materials and design tools, based on simulation models with predictive
capabilities.

One idea is to enhance the development of rational designs for
new and optimized, ordered CL nanostructures, as opposed to random
media.4 Advances in nanoscale manufacturing and in the synthesis
of porous electrodes increasingly facilitate the fabrication of tailored
catalyst layers with periodic pore structures.8,21 These catalyst layers
can be ultra thin and made from organic perylene whiskers,8 carbon
nanotubes or fibers,21 or mesoporous carbon,21 for example. However,
this development needs to be supported by the employment of math-
ematical models, simulation and optimization techniques related to
the scaling up of the dynamics at the microscale so as to assess and
predict the macroscopic performance of such new devices.10,18

In principle, a rigorous upscaling should start at the molecular
level but molecular dynamics (MD) simulations are still restricted
in terms of system size, owing to a lack of computing power and
speed on today’s high-performance computing clusters. Typically, MD
simulations do not go beyond the single pore level.15 Moreover, the
inclusion of electro-chemical reactions into MD simulations further
complicates the matter which is also one reason why coarse-grained
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methods, like dissipative particle dynamics (DPD) simulations,23 are
problematic alternatives for proper upscaling.

Instead, this work employs a continuum approach, using the well-
known Poisson-Nernst-Planck (PNP) equations, coupled to (Navier-)
Stokes (NS) flow, assuming a fully flooded electrode.5,18 While our
mathematical approach is applicable to many porous electrodes and
electrochemical reactions, we will focus on the oxygen reduction
reaction in PEM fuel cells,5 described by Eq. (1.1). In particular,
we consider an electron-conducting carbon matrix that forms a thin
porous structure whose walls are uniformly covered with a catalyst, for
example platinum. The pores are filled with liquid water, the product
of the ORR, that contains oxygen and protons which react at the pore
surface. In contrast, ionomers are absent in such ultra-thin catalyst
layers (UTCLs).5 Since platinum use in PEM fuel cells needs to drop
by an order of magnitude so as to make CLs cost effective, it is vital
to have reliable and powerful transport models to better understand
CL performance and functionality. For these reasons, these models
should go beyond simple volume averaging and treat nonlinearities in
a rigorous manner.

This contribution begins in the next section with a model descrip-
tion of the reaction kinetics at the microscopic pore level. It extends
previous work18 to include the flow of water through the porous elec-
trode. Subsequently, the model equations are scaled up to the macro-
scopic level by use of asymptotic multi-scale expansions. Only the
main results and steps are presented for reasons of readability, given
the highly technical nature of this upscaling technique. The derivation
extends the detailed examination in 18, which explains thoroughly the
upscaling by homogenization for periodic catalyst layers, toward the
crucial influence of fluid flow. As a result, we obtain effective macro-
scopic transport equations for periodic catalyst layers in the case of
general Stokes flows. Additionally, in the case of periodic and strongly
convective flows, we also obtain so-called diffusion-dispersion rela-
tions (e.g. Taylor-Aris dispersion). The main feature of our result is
that our asymptotic multi-scale approach systematically leads to ef-
fective porous media correction tensors such as effective diffusion,
mobility and electro-permeability coefficients that reliably account
for the pore geometry on the microscale. We then conclude with a
summary of the results.

Microscopic Transport Equations for Porous Catalysts

In this work, we present two methodologies which allow us to
extend the framework introduced in Schmuck and Berg,18 where fluid
flow was entirely neglected, toward equations accounting for periodic
or strongly convective flows described by the incompressible Stokes
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Figure 1. Top. Microscopic (pore-scale) representation of the catalyst layer:
�ε pore phase, Bε solid phase, I ε := ∂�ε ∩ ∂ Bε pore walls, Eε

O entrance for
O2, and Eε+ entrance for H+. εp and εs are the electric permittivities of the
pore and solid phase, respectively. Bottom. Reference cell defining the pore
geometry: Y 1 pore phase, Y 2 solid phase, IY := ∂Y 1 ∩ ∂Y 2 pore walls.

equation (by a moving frame strategy) as well as a reaction-diffusion-
Darcy-type formulation (by two-scale asymptotics). First, we intro-
duce the general notation required to formulate the basic transport
equations on the pore-scale, which we refer to as the microscale. The
macroscopic porous catalyst layer � ⊂ R

N shall be an open bounded
domain. The variable 1 ≤ N ≤ 3 is the dimension of space. On
the pore-scale, we denote the solid phase/matrix by Bε ⊂ � and the
pore phase by �ε such that the macroscopic porous catalyst layer is
composed as follows � := �ε ∪ Bε, see Figure 1. The parameter
ε := �

L defines the heterogeneity for the characteristic length scale �

of a reference pore Y ⊂ R
N and for the macroscopic length scale of

the porous catalyst, L . In our subsequent mathematical analysis, we
will focus on strongly heterogeneous catalyst materials, i.e. ε � 1.
The reference cell itself is composed of a solid phase Y 2 and a pore
phase Y 1, i.e., Y = Y 1 ∪ Y 2. Herewith, we then obtain the periodic
porous catalyst by covering � with respect to the reference pore Y
where the periodic union of Y 1 forms the pore space �ε and in the
same way the periodic union of the solid phase Y 2 gives the solid
matrix Bε.

Based on the ORR reaction (1.1), this allows us to state the fol-
lowing microscopic equations, describing reactions and transport in
a porous, completely water-filled catalyst layer of a PEM fuel cell.
These equations represent water flow (incompressible Stokes flow),
diffusion and convection of oxygen, and proton transport by diffusion,
migration and convection. The electric field is largely determined by
the distribution of protons and by the wall charge density σε

s .⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε2�uε + ∇ pε = κfε := −κcε
+∇φε in �ε,

divuε = 0 in �ε,

uε
τ = 0 on ∂�ε \ (

E ε
+ ∪ E ε

O

)
,

uε
n = − ε

2 Rw(cε
+, cε

O ,ηε) on ∂�ε \ (
E ε

+ ∪ E ε
O

)
,

uεand pεperiodic on E ε
O ∪ E ε

+,

[2.1]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t cε
O − div

(
D

O∇cε
O − Peuεcε

O

) = 0 in �ε,

cε
O = cD

O on E ε
O ,

−n · (
D

O∇cε
O − Peucε

O

) = 0 on E ε
+,

−n · (
D

O∇cε
O − Peucε

O

) = ε

4 RO (cε
+, cε

O ,ηε) on I ε,

[2.2]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t cε
+ − div

(
D

+(∇cε
+ + cε

+∇φε
) − Peuεcε

+
) = 0 in �ε,

−n · (
D

+(∇cε
+ + cε

+∇φε
) − Peuεcε

+
) = 0 on E ε

O ,

cε
+ = cD

+ on E ε
+,

−n · (
D

+(∇cε
+ + cε

+∇φε
) − Peuεcε

+
) = εR+(cε

+, cε
O , ηε) on I ε,

[2.3]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−div
(
E(x/ε)∇φε

) = cε
+ in �ε,

φε = φD
O on E ε

O ,

φε = φD
+ on E ε

+,

−n · (
E

ε∇φε
) = εσε

s(x) on I ε .

[2.4]

The variable ε(x/ε) := λ2χ�ε (x/ε) + γχBε (x/ε) is Y -periodic for
the dimensionless electric permittivity γ := εs

εp where εs and εp (see
Figure 1) stand for the electric permittivity of the solid and the pore
phase, respectively. Moreover, λ := λD

L represents the dimension-
less form of the Debye length λD := ( εp RT

2z2+eFc
)1/2 for a reference salt

concentration c and a charge number z+ of protons whose dimen-
sionless density is denoted by c+. This defines E

ε := {εkl}1≤k,l≤N by
εkl := ε(x/ε)δkl where δkl is the Kronecker delta. As in 5, 18, we
consider the case of sufficiently large overpotentials ηε which justify
the use of the cathodic branch of the Butler-Volmer equation, i.e., we
apply the following reaction rates

Rι(c
ε
+, cε

O , ηε) := βι

(
cε
+
)n+(

cε
O

)nO exp
( − αcη

ε
)
, [2.5]

for ι ∈ {+, O, w} and with the cathodic transfer coefficient αc, the
dimensionless concentrations c+ and cO , the dimensionless parame-
ters βι := i0 L

4eDι for ι ∈ {+, O}, βw = i0 Mw

ρw F , and the reaction orders
n+ = n+,ox and nO = nO,ox . The variable i0 is the exchange cur-
rent density. The diffusion constants Dι represent a reference value
associated with the diffusion tensors D

ι := {δι
kl}1≤k,l≤N , ι ∈ {+, O}.

Note that we follow Chan and Eikerling5 regarding the over-potential
η := φε−φ0 which assumes, in fact, only non-positive values. In elec-
trochemistry, φε is generally referred to as an activation over-potential
in relation to the equilibrium potential φ0.

Our upscaling, or homogenization, of general microscopic catalyst
layers makes use of a separation of scales which is a consequence of
the strong heterogeneity, i.e. ε � 1. Directly related to this separation
is the following local equilibrium property:

A system depending on a flow velocity U is in local thermodynamic
equilibrium (LTE) if and only if

0 = ∂

∂xk
μι − Uk, for 1 ≤ k ≤ N , [2.6]

on the microscale Y , where ι ∈ {O,+}, Uk is the k-th velocity com-
ponent of the upscaled fluid velocity U and μι denotes the upscaled
electrochemical potenials

μι :=
{

ln CO if ι = O,

ln C+ + z+� if ι = + .
[2.7]

The validity of local thermodynamic equilibria has traditionally
been a common assumption in the classical theory of non-equilibrium
systems.7 It means, for example, that constitutive equations hold true
at small scales under non-equilibrium conditions at the macroscopic
scale.

Remark 2.1. (LTE) We note that the local thermodynamic equi-
librium requires that equation (2.6) only holds on the level of each
reference cell. That means, macroscopic (slow) quantities do not vary
on the associated microscale (fast scale). LTE plays a crucial role
in the homogenization of nonlinear problems.17-19 Finally, we remark
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that every system that shows a scale separation of the form ε � 1
allows for the LTE approximation. This is no approximation anymore
in the limit ε → 0 where the upscaled equations are found.

We note that the thermodynamic equilibrium characterization (2.6)
in the context of fluid flow represents a combined requirement of the
chemical potential and the fluid velocity, see 9 for an example. How-
ever, we remark that a modified Nernst-Planck problem is introduced
in 9 based on arguments from continuum mechanics and thermody-
namics.

Upscaling of the Pore-scale Equations Toward a Macroscopic
Porous Catalyst Layer Formulation

For the upscaling, we use systematic multiscale expansions as
applied in homogenization theory.3,11,14 For strongly heterogeneous
media, i.e. ε � 1, the multiscale solutions vε ∈ {uε, cε

O , cε
+, φε} are

well-approximated by expansions of the form

vε(x) = v(x, x/ε) ≈ V (x, x/ε) + εv1(x, x/ε) + O(ε2), [3.1]

where V denotes the upscaled variable. It can be rigorously proven
that the formal ansatz (3.1) leads to rigorous error bounds of the
form O(ε1/2) in the context of weak solutions.17 This approach takes
reliably into account the pore geometry and systematically treats non-
linear terms which can still not be captured by volume averaging
strategies, for instance. Upscaled formulations are of general interest
due to two key features: (a) effective macroscopic equations allow for
efficient and low-dimensional computations; (b) one obtains impor-
tant knowledge about the influence of the microscale such as geometry
or material properties on the macroscale.

The basic idea in the subsequent upscaling of the microscopic equa-
tions (2.1)–(2.4) lies in approximating its solution by a leading order
expansion (3.1). This has already been done for the Stokes equation
(2.1), see for instance section 1.4, p.16 in 11. It leads systematically
to Darcy’s law with a permeability tensor K := {kkl}1≤k,l≤N defined
by the reference cell Y as follows

kkl := MY 1

(
wk

l

)
:= 1

|Y |
∫

Y 1
wk

l dy, [3.2]

where wk := [wk
1, wk

2, . . . , wk
N ]′ solves the periodic cell problem

−�wk + ∇yqk = ek, in Y 1,

divy wk = 0, in Y 1,

wk = 0, on ∂Y 1 ∩ ∂Y 2,

wk, qk are Y − periodic,

[3.3]

where ek denotes the canonical/standard basis in Eucledian space R
N .

Herewith, we can write Darcy’s law as follows{
U = F − K∇ P, in �,

div U = 0, in �,
[3.4]

where the upscaled force term F will be determined after upscaling
the remaining equations. Hence, we briefly summarize the main steps
of the upscaling methodology for the remaining problems (2.2)–(2.4):
applying the representation (3.1) to the system (2.2)–(2.4) and collect-
ing terms of equal order in ε leads to so-called reference cell problems
in O(ε−1), or more specifically

ξk
O :

⎧⎪⎨
⎪⎩

−div
(
D

O∇ξk
O − ek

) = 0 in Y 1,

n · (
D

O∇ξk
O − ek

) = 0 on IY ,

ξk
O is Y − periodic and MY 1

(
ξk

O

) = 0,

[3.5]

ξk
+ :

⎧⎪⎨
⎪⎩

−div
(
D

+∇ξk
+
) = −div

(
D

+∇ξk
φ

)
in Y 1,

n · (
D

+∇ξk
+ − D

+∇ξk
φ

) = 0 on IY ,

ξk
O is Y − periodic and MY 1

(
ξk

O

) = 0,

[3.6]

ξk
φ :

{
−div

(
E(y)∇ξk

φ − ek

) = 0, in Y,

ξk
φ is Y − periodic and MY

(
ξk

φ

) = 0,
[3.7]

where 1 ≤ k ≤ N and the first-order terms are defined by the upscaled
variable V in the form v1(x, x/ε) = −∑N

k=1 ξk
v(y) ∂V

∂xk
. Moreover,

we set IY := ∂Y 1 ∩ ∂Y 2. This separation is justified since the cell
problems for the leading order terms V (x, y) in (3.1), obtained by
collecting terms of O(ε−2), show that V (x) = V (x, y). The upscaled
equations in O(ε0) then read as follows⎧⎪⎨

⎪⎩
U = C+M

+∇� − K∇ P, in �,

div U

= − 1
2 βw(C+)n+ (CO )nO exp(−αc(� − �0)), in �,

[3.8]

{
θ∂t CO − div

(
D

O∇CO − PeUCO

)
= 1

4 βO (C+)n+ (CO )nO exp(−αc(� − �0)), in �,
[3.9]

{
θ∂t C+ − div

(
D

+∇C+ + C+M
+∇� − PeUC+

)
= β+(C+)n+ (CO )nO exp(−αc(� − �0)), in �,

[3.10]

{−div
(
E∇�

) = θC+ + Qs in �, [3.11]

where the porosity parameter θ has been introduced. Its value usually
lies in the range 0.2−0.5 and it has an impact on the flow and the kinet-
ics by affecting the mobility and diffusion of ions and oxygen. These
properties are determined by the effective porous media correction ten-

sors D
O

:= {dO
kl }1≤k,l≤N , D

+
:= {d+

kl}1≤k,l≤N and M
+

:= {m+
kl}1≤k,l≤N

which, along with E
+

:= {εkl}1≤k,l≤N , are defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dO
kl := 1

|Y |
∫

Y 1

(
δO

kl − δO
kj

∂ξl
O

∂y j

)
dy,

d+
kl := 1

|Y |
∫

Y 1

(
δ+

kl − δ+
k j

∂ξl+
∂y j

)
dy,

m+
kl := 1

|Y |
∫

Y 1

(
δ+

kl − δ+
k j

∂ξl
φ

∂y j

)
dy,

εkl := 1
|Y |

∫
Y 1

(
εkl (y) − εk j (y)

∂ξl
φ

∂y j

)
dy,

[3.12]

where we again applied Einstein’s summation convention on free
repeated indexes j . Moreover, Qs(x) := 1

|Y |
∫

I Y σs(x, y) do(y) is the

upscaled surface charge density σs , βι := i0 L�

eDι
:= βι

|IY |
|Y | and βw :=

i0 L
eD+

|IY |
|Y | := βw�, are dimensionless numbers coupling the interfacial

reactions to the bulk equations for ι ∈ {+, O}, L is the characteristic
length of the catalyst layer, and the parameters n+ and nO denote
reaction orders.

We note that the appearance of a background charge Qs in (3.11)
is well-accepted in semiconductor theory. In fact, the homogenization
theory gives a rigorous justification for it.16,18 More striking is the
appearance of the electric field as a driving force in a macroscopic
Darcy law, Eq. (3.8). In essence, it represents a macroscopic electro-
osmotic drag. Meanwhile, an explicit model is required to determine
σs . One method is to relate the electric potential of protons φε at the
pore surface I ε to the surface charge density σs , following the concept
of potential of zero charge, as proposed by Chan and Eikerling.5

Essentially, it assumes a relatively constant Helmholtz capacitance to
derive a Robin boundary condition for φε at I ε.

Remark 3.1 (Porous Media Correction Tensors 3.12). From clas-
sical homogenization theory (e.g. 6), it follows that the tensors (3.12)
are symmetric, positive definite. Moreover, in the case of isotropic elec-
tric permeabilities, i.e. εkl := εδkl , and an isolating porous medium
(γ → ∞, see 16), it follows that the correctors ξk

O = ξk
+ = ξk

φ solve
the same reference cell problem. In the case where the reference cells
form straight channels, one can compute these correctors analytically,
see 2, 16.
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The main feature of the porous media tensors is their accu-
rate description of anisotropic systems which most periodic catalyst
layer structures represent. Carbon nanotube arrays and 3M’s whisker
structure8 contain a main axis of orientation and exhibit periodicity
in two dimensions only. These two examples would be the ideal can-
didates to compute porous media tensors and validate them against
experimental data. This is beyond the scope of this contribution but
planned future work.

Upscaling for Periodic and Strongly Convective Flows

Next, we restrict ourselves to periodic fluid flow exhibiting
a dominant Péclet number. That means that the Coulomb force
f ε = −κcε

+∇φε and the chemical reaction on the pore walls Rw ,
which induce local non-periodic effects, are negligibly small in com-
parison to a constant flow driven by f ε = e1. The positive sign in
front of e1 defines a flow from the PEM to the GDL. This leads then
to the following periodic flow problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−μ�yu + ∇y p = e1 in Y 1,

divy(u) = 0 in Y 1,

u = 0 on IY ,

u and p are Y − periodic.

[4.1]

The difference in the upscaling is the use of an adapted approxima-
tion (3.1), which accounts for the dominant flow in the asymptotic
expansion by a so-called moving frame:

uε(t, x) = u
(

t, x − v

ε
t, x/ε

)
≈ U (t, x) +

∞∑
i=1

εi ui

(
t, x − v

ε
t, x/ε

)
.

[4.2]

The reference cell problems, which are obtained by collecting the
terms of O(ε−1), have the following form

ξk
O :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−divy

(
D

O∇yξ
k
O

) − Pemic(u(y) · ∇y)ξk
O

= vk − Pemicuk in Y 1,

n · (
D

O∇yξ
k
O − Pemicu(y)ξk

O

) = 0 on IY ,

ξk
O is Y − periodic and MY 1

(
ξk

O

) = 0,

[4.3]

ξk
+ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−divy

(
D

+∇yξ
k
+
) + Pemic(u(y) · ∇y)ξk

+
= −divy

(
D

+∇yξ
k
φ

) − (
vk − Pemicuk

)
in Y 1,

n · (
D

+∇yξ
k
+ − D

+∇yξ
k
φ − Pemicu(y)ξk

+
) = 0 on IY ,

ξk
O is Y − periodic and MY 1 (ξk

O ) = 0,

[4.4]

ξk
φ :

{
−div

(
E(y)∇ξk

φ − ek

) = 0, in Y,

ξk
φ is Y − periodic and MY (ξk

φ) = 0 .
[4.5]

At O(ε0), we obtain the upscaled equations showing so-called
diffusion-dispersion relations (e.g. Taylor-Aris dispersion) through
tensors which depend on u:{

θ∂t CO − div
(
D

O
(u)∇CO

)
= 1

4 βO (C+)n+ (CO )nO exp
( − αc(� − �0)

)
, in �,

[4.6]

{
θ∂t C+ − div

(
D

+
(u)∇C+ + C+M

+∇�
)

= β+(C+)n+ (CO )nO exp
( − αc(� − �0)

)
, in �,

[4.7]

{−div
(
E∇�

) = θC+ + Qs . [4.8]

Here, the effective transport tensors D
O

(u) := {dO
kl }1≤k,l≤N , D

+
(u) :=

{d+
kl}1≤k,l≤N , M

+
:= {m+

kl}1≤k,l≤N , E
+

:= {εkl}1≤k,l≤N , which we refer

to as porous media tensors, are defined as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dO
kl := 1

|Y |
∫

Y 1

(
δO

kl

(
1 + Peloc(vk − uk)ξl

O

) − δO
kj

∂ξl
O

∂y j

)
dy,

d+
kl := 1

|Y |
∫

Y 1

(
δO

kl

(
1 + Peloc(vk − uk)ξl

O

) − δ+
k j

∂ξ
3l+

∂y j

)
dy,

m+
kl := 1

|Y |
∫

Y 1

(
δ+

kl − δ+
k j

∂ξ
3l
φ

∂y j

)
dy,

εkl := 1
|Y |

∫
Y 1

(
εkl (y) − εk j (y)

∂ξ
3l
φ

∂y j

)
dy,

[4.9]

where we again applied Einstein’s summation convention on free
repeated indexes.

Summary

For the first time, a multi-scale approach has been presented to
scale up governing equations for the oxygen reduction reaction in
microscale pores of cathode catalyst layers in PEM fuel cells. It yields
macroscopic transport equations that include porous media tensors
which are computed by solving the single-pore problem for a periodic
pore structure.

Arguably, the derivation of a macroscopic Darcy’s law and a
macroscopic Butler-Volmer equation are the most important results
of this procedure. The latter derivation is quite intuitive but Darcy’s
law includes nontrivial tensors, namely the permeability tensor and
the mobility tensor.

For the limiting case of periodic and strongly convective flow,
Darcy’s law at the macro-level is replaced by a single-pore problem
for the velocity at the micro-level that, in turn, enters the macro-
scopic equations for the remaining variables (CO , C+, �) via tensors.
Herewith, we obtain systematically effective macroscopic transport
equations by these porous media correction tensors (3.12) that reli-
ably account for microscopic characteristics such as pore geometry,
interfacial reactions, and surface charges.

The employed method is generic in the sense that it is applica-
ble to other electrode geometries and reaction rates such as the full
Butler-Volmer equation. The only requirement is the presence of a
strong heterogeneity, i.e., ε � 1, as well as the existence of a charac-
teristic reference geometry which defines the microscale of the porous
medium. The corresponding macroscopic transport equations are gen-
erally expected to retain their mathematical structure. However, recent
work20 demonstrates in the case of upscaling of ionic transport equa-
tions for symmetric electrolytes, that a new transport term emerges on
the macroscale due to specific material properties on the microscale.

The next step will be to compare numerical results, based on the
macroscopic transport equations (3.8)–(3.11), to experimental data.
For this purpose, a periodic pore structure is required for which high-
quality data can be obtained in situ and with small errors, meaning
with small uncertainty. This is a formidable challenge but the ultra-
thin catalyst layers produced by 3M,8 might provide a good starting
point.

List of Symbols

Bε solid phase
cε
ι microscopic concentrations, ι ∈ {O,+}

Cι upscaled concentrations, ι ∈ {O, +}
F Faraday constant
i0 exchange current density
I ε pore walls in porous medium �
IY pore walls in reference pore Y
� length scale of the reference pore Y
L length scale of the porous medium �
Mw molar mass of water
n+, nO reaction orders
n microscopic normal vector
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N upscaled normal vector
p pressure in the microscale domain �ε

P upscaled pressure
Qs upscaled surface charge on pore walls
uε microscopic fluid velocity
uε

τ, uε
n tangential and normal projection of uε

U, Uk upscaled fluid velocity and its components
wk periodic fluid velocity in reference cell Y
Y microscale reference pore
Y 1, Y 2 microscale pore, solid phase
x, y macro-, microscopic coordinates
D

ι diffusion tensors
D

ι
effective diffusion tensors

E
ε composite electric permittivity tensor

E
ε

effective electric permittivity tensor
K effective permeability tensor
M

+
effective mobility tensor

αc cathodic transfer coefficient
βι dimensionless exchange current

density, ι ∈ {O, +, w}
βι effective dimensionless exchange

current density, ι ∈ {O,+, w}
ε heterogeneity parameter
ε dimensionless electric permittivity
εs , εp electric permittivity of solid, pore phase
η over-potential
φ electrostatic potential
κ dimensionless intensity of Coulomb force
λ dimensionless Debye length
λD Debye length
μι chemical potential for Cι, ι ∈ {O, +}
ρw density of water
θ porosity
σs wall charge density
ξk

+, ξk
O , ξk

φ first order correctors of cε
+, cε

O , φε

� upscaled electrostatic potential
�0 upscaled equilibrium electric potential
� macroscopic, porous catalyst layer
�ε pore phase
� Lebesgue measure of pore wall
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