
Numerical Analysis of PDEs F10ND2/F11ND2
Exam 2013 - Solutions

Question 1. [50 Marks total]

(a) By definition,

Bxu(x) = u(x)− u(x−∆x), δ2
xu(x) = u(x+ ∆x)− 2u(x) + u(x−∆x);

Expanding u(x±∆x) in a Taylor series, we have

u(x±∆x) = u±∆xux +
1

2
∆x2uxx ±

1

3!
∆x3uxxx +

1

4!
∆x2uxxxx + . . . ,

∣∣∣∣
x

so

Bx

∆x
u =

1

∆x

(
u−

(
u−∆xux +

1

2
∆x2uxx −

1

3!
∆x3uxxx + . . .

))
= ux −

∆x

2
uxx +O(∆x2)

and

δ2
x

∆x2
u =

1

∆x2

[(
u+ ∆xux +

1

2
∆x2uxx +

1

3!
∆x3uxxx +

1

4!
∆x4uxxxx + . . .

)
− 2u+

+

(
u−∆xux +

1

2
∆x2uxx −

1

3!
∆x3uxxx +

1

4!
∆x4uxxxx + . . .

)]
,

= uxx +
∆x2

12
uxxxx +O(∆x4),

as required.

(b) For the BTCS scheme

L∆ =
Bt

∆t
− δ2

x

∆x2
.

so the LTE is given by

LTE = L∆u(x, t) = ut −
∆t

2
utt +O(∆t2)−

(
uxx +

∆x2

12
uxxxx +O(∆x4)

)
.

Since ut = uxx from the PDE, and by repeated differentiation utt = uxxxx we have after
some simplification

LTE = −
(

1

2
∆t+

1

12
∆x2

)
uxxxx +O(∆t2) +O(∆x4),

and hence a = −1/2 and b = −1/12.
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We have

L∆w
n+1
j = 0

⇒ Bt

∆t
wn+1

j =
δ2
x

∆x2
wn+1

j ,

⇒ 1

∆t
(wn+1

j − wn
j ) =

1

∆x2
(wn+1

j−1 − 2wn+1
j − wn+1

j+1 ),

⇒ −r(wn+1
j−1 + wn+1

j+1 ) + (1 + 2r)wn+1
j = wn

j ,

for j = 1, . . . , J − 1 and n ≥ 0 where J = 1/∆x and r = ∆t/∆x2.

Testing for stability, put wn
j = ξneiωj into the scheme to get after cancellation of ξneiωj

ξ(1 + 2r − reiω − re−iω) = 1,

so
ξ = 1/(1 + 2r − 2r cos(ω)) = 1/(1 + 4r sin2(ω/2)) ≤ 1,

since both r and sin2 are positive. Clearly ξ > 0 for the same reason. So |ξ| ≤ 1 for
all r and the scheme is unconditionally stable.

(c) If J = 4 and r = 0.5 then ∆x = 1/4 and ∆t = 1/32. We have

w0 = [0.5 sin(πj∆x), j = 0, . . . , 4] = [0,
0.5√

2
, 0.5,

0.5√
2
, 0] = [0, 0.353552, 0.5, 0.353552, 0].

Applying the scheme above for j = 1, . . . , 3 gives

2w1
1 − 0.5w1

2 = 0.5/
√

2 = 0.353552,

−0.5w1
1 + 2w1

2 − 0.5w1
3 = 0.5,

−0.5w1
2 + 2w1

3 = 0.5/
√

2 = 0.353552.
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Question 2. [50 Marks total]

(a) The FTCS scheme is

Ft

∆t
wn

j =
δ2
x

∆x2
wn

j − wn
j

⇒

(
wn+1

j − wn
j

∆t

)
=

(
wn

j−1 − 2wn
j + wn

j+1

∆x2

)
− wn

j ,

and the BTCS scheme is

Bt

∆t
wn+1

j =
δ2
x

∆x2
wn+1

j − wn+1
j

⇒

(
wn+1

j − wn
j

∆t

)
=

(
wn+1

j−1 − 2wn+1
j + wn+1

j+1

∆x2

)
− wn+1

j .

Taking the average of these two gives(
wn+1

j − wn
j

∆t

)
=

1

2

(
δ2
x

∆x2
wn+1

j +
δ2
x

∆x2
wn

j − (wn+1
j + wn

j )

)

⇒

(
wn+1

j − wn
j

∆t

)
=

(
wn+1

j−1 − 2wn+1
j + wn+1

j+1

2∆x2

)
+

(
wn

j−1 − 2wn
j + wn

j+1

2∆x2

)
−

(
wn+1

j + wn
j

2

)
.

multiplying through by ∆t, defining r = ∆t/∆x2, and collecting tn+1 terms on the left
we have

−r
2
wn+1

j−1 +

(
1 + r +

∆t

2

)
wn+1

j −r
2
wn+1

j+1 =
r

2
wn

j−1+

(
1− r − ∆t

2

)
wn

j +
r

2
wn

j+1, j = 1, . . . , J−1.

(b) when J = 2, r = 1, then ∆x = 0.5 ∆t = 0.25 and the above equations become

−0.5wn+1
j−1 + 2.125wn+1

j − 0.5wn+1
j+1 = 0.5wn

j−1 − 0.125wn
j + 0.5wn

j+1, j = 1.

We have w0 = [1, 2, 1].

The equation for the w1
1 are, after taking into account that w0

0 = w0
2 = w1

0 = w1
2 = 1,

2.125w1
1 = 2− 0.125w0

1,

i.e.,
w1

2 = 0.823529.

(c) Substitute wn
m = ξneimω and simplify in the usual way

− 1

2
rei(m−1)ωξn+1 + (1 + r + 0.5∆t)eimωξn+1 − 1

2
rei(m+1)ωξn+1 =

1

2
rei(m−1)ωξn + (1− r − 0.5∆t)ξn +

1

2
rei(m+1)ωξn

⇒ −1

2
re−iωξ + (1 + r + 0.5∆t)ξ − 1

2
reiωξ =

1

2
re−iω + (1− r − 0.5∆t) +

1

2
reiω

(taking out factors eimω and ξn)

⇒ (1 + 0.5∆t)ξ − ξ 1

2
r(eiω − 2 + e−iω) = 1− 0.5∆t+

1

2
r(eiω − 2 + e−iω)
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Now
eiω − 2 + e−iω = −2(1− cos(ω)) = −4 sin2(ω/2)

so the above becomes

(1 + 0.5∆t)ξ + 2ξ sin2(ω/2)r = 1− 0.5∆t− 2r sin2(ω/2)

⇒ ξ =
1− 0.5∆t− 2r sin2(ω/2)

1 + 0.5∆t+ 2r sin2(ω/2)

We need |ξ| ≤ 1 for stability for all ω ∈ [−π, π]. Since ξ is clearly real in this case this
means we require −1 ≤ ξ ≤ 1. Now

ξ =
1 + 0.5∆t+ 2r sin2(ω/2)−∆t− 4r sin2(ω/2)

1 + 0.5∆t+ 2r sin2(ω/2)
= 1− ∆t+ 4r sin2(ω/2)

1 + 0.5∆t+ 2r sin2(ω/2)

so ξ is clearly always less than +1. Now consider the inequality ξ ≥ −1. This is (on
multiplying through by the denominator)

−1− 0.5∆t− 2r sin2(ω/2) ≤ 1− 0.5∆t− 2r sin2(ω/2)

⇒ −1 ≤ 1

This last clearly holds for all r. Hence the inequality |ξ| ≤ 1 is always true and the
method is unconditionally stable.
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Question 3. [50 Marks total]

(a) The upwind method is
wn+1

j − wn
j

∆t
+ a

wn
j − wn

j−1

∆x
= 0.

The LTE of the scheme is

LTE =
u(xj, tn+1)− u(xj, tn)

∆t
+ a

u(xj, tn)− u(xj−1, tn)

∆x

=

(
ut +

1

2
∆tutt +O(∆t2) + a

[
ux −

1

2
∆xuxx +O(∆x2)

])∣∣∣∣
(xj ,tn)

= (ut + aux)︸ ︷︷ ︸
=0 by PDE

+
1

2
(∆t utt − a∆xuxx)︸ ︷︷ ︸

6=0 in general

+O(∆t2,∆x2),

hence, the leading term is O(∆t,∆x) and the method is of first order.

(b) Inserting wn
j = ξneiωj into the L-W scheme and simplifying, we get

ξ = (1− p2)− 1

2
p(1− p)eiω +

1

2
p(1 + p)e−iω

= 1 + p2(cosω − 1)− ip sinω

= 1− 2p2 sin2(ω/2)− ip sinω

= 1− 2p2 sin2(ω/2)− 2ip sin(ω/2) cos(ω/2)

So

|ξ|2 =
[
1− 2p2s2

]2
+ 4p2s2c2, where s = sin(ω/2), c = cos(ω/2)

= 1 + 4p2s2(c2 − 1) + 4p4s4

= 1− 4p2(1− p2)s4

Clearly this is ≤ 1 for all |p| ≤ 1 and > 1 for all |p| > 1, so the scheme is stable if and
only if |p| ≤ 1.

(c) The upwind scheme is only first order in space and time and suffers from numeri-
cal diffusion (artificial viscosity). The Lax-Wendroff scheme is second order accurate
which is better than the upwind scheme and produces less numerical diffusion, but the
numerical solution can contain some oscillations. Both methods are stable for |p| ≤ 1.
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Question 4. Inserting the approximation

u(x) ≈ w(x)
N∑
k=1

ckφk(x),

into the functional J [u] we get

J [c] =
1

2

∫ 1

0

( N∑
k=1

ck
dφk(x)

dx

)2

+

(
N∑
k=1

ckφk(x)

)2

+ 2
N∑
k=1

ckf(x)φk(x)

 dx
Now minimise over the ck, for this we require that ∂J/∂cj = 0, j = 1, . . . , N , so∫ 1

0

[
dφj

dx

N∑
k=1

ck
dφk

dx
+ φj

N∑
k=1

ckφk + f(x)φj(x)

]
dx = 0

⇒
N∑
k=1

ck

∫ 1

0

[
dφj

dx

dφk

dx
+ φjφk

]
dx+

∫ 1

0

f(x)φj(x)dx = 0

⇒
N∑
k=1

aj,kck + bj = 0, or Ac = −b

where

aj,k =

∫ 1

0

[
dφj

dx

dφk

dx
+ φjφk

]
dx, bj =

∫ 1

0

f(x)φj(x).

For the basis functions φn(x) shown in the question, these are piecewise linear functions
given by

φk(x) =


(x− xk−1)/(xk − xk−1), xk−1 ≤ x ≤ xk
(xk+1 − x)/(xk+1 − xk), xk ≤ x ≤ xk+1

0, otherwise.

Each φj(x) is nonzero over only two elements, [xk−1, xk] and [xk, xk+1], and takes the value
1 at x = xk.

We can now calculate bj easily (f ≡ 1)

bj =

∫ 1

0

fφj dx =

∫ xj

xj−1

(x− xj−1)/(xj − xj−1) dx+

∫ xj+1

xj

(x− xj+1)/(xj − xj+1) dx,

=
1

2

(x− xj−1)2

(xj − xj−1)

∣∣∣∣x=xj

x=xj−1

+
1

2

(x− xj+1)2

(xj − xj+1)

∣∣∣∣x=xj+1

x=xj

=
1

2
(xj − xj−1) +

1

2
(xj+1 − xj),

= ∆x,

since the nodes are equally spaced, xj − xj−1 = xj+1 − xj = ∆x. We could have by-passed
the integration process by noting that the integral is just f× the area of a triangle with
height 1 and base 2∆x.

We note that φ′k is a piecewise constant function, in the equally spaced case

φ′k(x) =


1/∆x, xk−1 ≤ x ≤ xk
−1/∆x, xk ≤ x ≤ xk+1

0, otherwise.
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Now consider the matrix element ak,k =
∫

[φ′k(x)2 + φk(x)2] dx. The integrand is nonzero
over both [xk−1, xk] and [xk, xk+1]. Now∫

φ′k(x)2 dx =

∫ xk

xk−1

1

∆x2
dx+

∫ xk+1

xk

1

∆x2
dx =

2

∆x
,

and ∫
φk(x)2 dx =

∫ xk

xk−1

(x− xk−1)2

∆x2
dx+

∫ xk+1

xk

(x− xk+1)2

∆x2
dx

=

[
(x− xk−1)3

3∆x2

]xk

xk−1

+

[
(x− xk+1)3

3∆x2

]xk+1

xk

=
2∆x

3
,

Now consider ak−1,k =
∫
φ′k−1(x)φ′k(x) + φk−1(x)φk(x) dx. The integrand is nonzero only

over [xk−1, xk]. Now ∫
φ′k−1(x)φ′k(x) dx =

∫ xk

xk−1

−1

∆x
· 1

∆x
dx = − 1

∆x
.

and∫
φk−1(x)φk(x) dx =

∫ xk

xk−1

(x− xk−1)(xk − x)

∆x2
dx =

∫ xk

xk−1

(x− xk−1)(xk−1 + ∆x− x)

∆x2
dx

=

∫ xk

xk−1

−(x− xk−1)2 + ∆x(x− xk−1)

∆x2
dx

=
−(x− xk−1)3/3 + ∆x(x− xk−1)2/2

∆x2

∣∣∣∣xk

xk−1

=
∆x

6
.

So finally we have

ak,k−1 =
∆x

6
− 1

∆x
, ak,k =

2

∆x
+

2∆x

3
, and bk = h.
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