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Introduction and basic concepts

This course consists of the following four Sections:

. Partial Differential Equations and the Finite Difference Method
2. Parabolic PDEs

3. Hyperblic PDEs

4. Elliptic PDEs
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Introduction and basic concepts

This course consists of the following four Sections:

. Partial Differential Equations and the Finite Difference Method
2. Parabolic PDEs

3. Hyperblic PDEs

4. Elliptic PDEs

—_

What is a partial differential equation?
Definition. Equations which contain the partial derivatives of a function
u(x,y) : R?> — R are called Partial Differential Equations (PDEs):
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i) 1st order PDE:

ou

a—UX=O.

= Solutions u(x, y) are invariant in x, hence u(x, y) = ¢(y).



Examples of PDEs:

i) 1st order PDE:

u_,
ox X

= Solutions u(x, y) are invariant in x, hence u(x, y) = ¢(y).

ii) Linear transport or advection:
ur+cux =0, XeR, t>0
u(0,x) = up(x), “initial condition”
= Solution u(t, x) = up(x — ct), since

_Ou_Ouw . ou
=——=—= Clp(x —ct) = —c .
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Examples of PDEs (continued):
iii) Laplace equation: Let Q ¢ R?. Find the solution of
Au(x,y) :=div(Vu) == ux + Uy, =0,

which requires boundary conditions for uniqueness. Possible solutions
are

u(x,y) =x*—y?,

u(x,y) =Iny/x2+ y2.
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Examples of PDEs (continued):
iii) Laplace equation: Let Q ¢ R?. Find the solution of

Au(x,y) :=div(Vu) == ux + Uy, =0,

which requires boundary conditions for uniqueness. Possible solutions

are

u(x,y) =x*—y?,

u(x,y) =Iny/x2+ y2.

Uit — CPuxx =0, XeR, t>0
u(0,x) = A(x) u(0,x)= B(x), “initial conditions”

= Solution given by d’Alembert’s formula

iv) Wave equation:

x+ct
u(t,x) =

N —

—ct
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v) Diffusion equation:
ur— DAu=0 ]

where D > 0 is the diffusion constant.



Examples of PDEs (continued)

v) Diffusion equation:
us — DAu = 0,
where D > 0 is the diffusion constant.
v) Black-Scholes equation:
1
Vi + rsvs + éozszvss =rv,

where v(s, t) is the value of a share option, s is the share price, r is the
interest rate, and o is the share “volatility”.
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Classification of PDEs

Definition. A linear PDE of the form

a(x, y)uxx + 2b(x, y)ux,y + c(x, y)uyy + d(x, y)ux
"’e(X,}’)Uy‘*’ f(X,y)U: g7

is called

i) elliptic in (x,y) € Q, ifac — b?> > 0,

(These definitions can be generalized to higher number of dimensions and other

orders)
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Classification of PDEs

Definition. A linear PDE of the form

a(x, y)uxx + 2b(x, y)ux,y + c(x, y)uyy + d(x, y)ux
"’e(X,}’)Uy‘*’ f(X,y)U: g7

is called
i) elliptic in (x,y) € Q, ifac — b?> > 0,
i) hyperbolic in (x,y) € Q, ifac — b? <0,

(These definitions can be generalized to higher number of dimensions and other
orders)
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Classification of PDEs

Definition. A linear PDE of the form
a(x, y)uxx + 2b(x, y)ux,y + c(x, y)uy, + d(x, y)ux
+e(x,y)uy +f(x,y)u=g,
is called
i) elliptic in (x,y) € Q, ifac — b?> > 0,
i) hyperbolic in (x,y) € Q, ifac — b? <0,
iii) parabolic in (x,y) € Q, ifac — b?> =0.

(These definitions can be generalized to higher number of dimensions and other
orders)
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Classification of PDEs

Definition. A linear PDE of the form
a(x, y)uxx + 2b(x, y)ux,y + c(x, y)uy, + d(x, y)ux
+e(x,y)uy +fx,yju=g,

is called

i) elliptic in (x,y) € Q, ifac — b? >0,

i) hyperbolic in (x,y) € Q, ifac — b? <0,

iii) parabolic in (x,y) € Q, ifac — b?> =0.
The above linear PDE is elliptic (hyperbolic, parabolic) if it is elliptic
(hyperbolic, parabolic) for all (x, y) € Q.

(These definitions can be generalized to higher number of dimensions and other

orders)
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i) Laplace equation: Let Q ¢ R?. The equation
AU(X,y) == UXX + Uyy = 0,

is elliptic, sincea=c=1,b=0 = ac—b>=1.



Examples:

i) Laplace equation: Let Q ¢ R?. The equation
Au(Xx,y) = Uxx + Uy =0,

is elliptic, sincea=c=1,b=0 = ac—b>=1.

ii) Wave equation: The equation
Uit — CzUxx =0,

is hyperbolic, sincea=1,c=-1,b=0 = ac—b?>=—1
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Examples (continued)

iii) The diffusion equation

Ut—DAUZO,

and the Black-Scholes equation

1 2 a2
Vt+rsVs+§O— S Vss:rv./

are parabolic, since a

=1,b=c=d=0, e=—1 (for diffusion) and
a=1,b=c=0,d=e=1

(for Black-Scholes) = ac— b =0.

)
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Numerical Methods for PDEs

Why?
@ Often, no exact analytical solutions available
@ Provide a systematic approximation of exact solutions (e.g error
quantificiation)
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Numerical Methods for PDEs

Why?
@ Often, no exact analytical solutions available
@ Provide a systematic approximation of exact solutions (e.g error
quantificiation)

Main numerical methods: (Advantages/Disadvantages)
1. Finite Diference (FD) Methods. Find discrete solutions on a
(often rectangular) grid/mesh.
(Simple / Complicated Domains, Discretised classical solutions)
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Numerical Methods for PDEs

Why?
@ Often, no exact analytical solutions available
@ Provide a systematic approximation of exact solutions (e.g error
quantificiation)

Main numerical methods: (Advantages/Disadvantages)
1. Finite Diference (FD) Methods. Find discrete solutions on a
(often rectangular) grid/mesh.
(Simple / Complicated Domains, Discretised classical solutions)
2. Finite Element (FE) Methods. A class of Galerkin methods which
are based on a partition of the domain into small finite elements.
(Better in irregular domains / More complex to set up and analyze)
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Numerical Methods for PDEs

Why?
@ Often, no exact analytical solutions available
@ Provide a systematic approximation of exact solutions (e.g error
quantificiation)

Main numerical methods: (Advantages/Disadvantages)

1. Finite Diference (FD) Methods. Find discrete solutions on a
(often rectangular) grid/mesh.
(Simple / Complicated Domains, Discretised classical solutions)

2. Finite Element (FE) Methods. A class of Galerkin methods which
are based on a partition of the domain into small finite elements.
(Better in irregular domains / More complex to set up and analyze)

3. Spectral Methods. Solutions are approximated by a truncated
expansion in the eigenfunctions of some linear operator (e.g. a
truncated Fourier Series).
(Highly accurate for problems with smooth solutions/ Not so useful

on irreqular domains or for problems with discontinuities) SFWATT
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Summary of learning targets:

1. What is a PDE?

2. What types of PDEs exist and how are they classified?

3. What kind of numerical methods can be used? Advantages and
disadvantages between them?
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