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Introduction and basic concepts

This course consists of the following four Sections:
1. Partial Differential Equations and the Finite Difference Method
2. Parabolic PDEs
3. Hyperblic PDEs
4. Elliptic PDEs

What is a partial differential equation?
Definition. Equations which contain the partial derivatives of a function
u(x , y) : R2 → R are called Partial Differential Equations (PDEs):

F
(

x , y ,u,
∂u
∂x

,
∂u
∂y

,
∂u

∂x∂y

)
= 0 .
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Examples of PDEs:

i) 1st order PDE:

∂u
∂x

= ux = 0 .

⇒⇒⇒ Solutions u(x , y) are invariant in x , hence u(x , y) = φ(y).

ii) Linear transport or advection:{
ut + cux = 0 , x ∈ R, t > 0
u(0, x) = u0(x) , “initial condition”

⇒⇒⇒ Solution u(t , x) = u0(x − ct), since

ut =
∂u
∂t

=
∂u0

∂t
= −cu′

0(x − ct) = −c
∂u
∂x

.
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Examples of PDEs (continued):

iii) Laplace equation: Let Ω ⊂ R2. Find the solution of

∆u(x , y) := div (∇u) := uxx + uyy = 0 ,

which requires boundary conditions for uniqueness. Possible solutions
are

u(x , y) = x2 − y2 ,

u(x , y) = ln
√

x2 + y2 .

iv) Wave equation:{
utt − c2uxx = 0 , x ∈ R, t > 0
u(0, x) = A(x) ut(0, x) = B(x) , “initial conditions”

⇒⇒⇒ Solution given by d’Alembert’s formula

u(t , x) =
1
2
(A(x + ct) + A(x − ct)) +

1
2c

∫ x+ct

x−ct
B(ξ)dξ .
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Examples of PDEs (continued)

v) Diffusion equation:

ut − D∆u = 0 ,

where D > 0 is the diffusion constant.

v) Black-Scholes equation:

vt + rsvs +
1
2
σ2s2vss = rv ,

where v(s, t) is the value of a share option, s is the share price, r is the
interest rate, and σ is the share “volatility”.
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Classification of PDEs

Definition. A linear PDE of the form

a(x , y)uxx + 2b(x , y)ux ,y + c(x , y)uyy + d(x , y)ux

+ e(x , y)uy + f (x , y)u = g ,

is called

i) elliptic in (x , y) ∈ Ω, if ac − b2 > 0 ,

ii) hyperbolic in (x , y) ∈ Ω, if ac − b2 < 0 ,

iii) parabolic in (x , y) ∈ Ω, if ac − b2 = 0 .

The above linear PDE is elliptic (hyperbolic, parabolic) if it is elliptic
(hyperbolic, parabolic) for all (x , y) ∈ Ω.

(These definitions can be generalized to higher number of dimensions and other
orders)
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Examples:

i) Laplace equation: Let Ω ⊂ R2. The equation

∆u(x , y) = uxx + uyy = 0 ,

is elliptic, since a = c = 1, b = 0 ⇒⇒⇒ ac − b2 = 1.

ii) Wave equation: The equation

utt − c2uxx = 0 ,

is hyperbolic, since a = 1, c = −1, b = 0 ⇒⇒⇒ ac − b2 = −1

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs (Lecture 1) 8/ 11



Examples:

i) Laplace equation: Let Ω ⊂ R2. The equation

∆u(x , y) = uxx + uyy = 0 ,

is elliptic, since a = c = 1, b = 0 ⇒⇒⇒ ac − b2 = 1.

ii) Wave equation: The equation

utt − c2uxx = 0 ,

is hyperbolic, since a = 1, c = −1, b = 0 ⇒⇒⇒ ac − b2 = −1

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs (Lecture 1) 8/ 11



Examples (continued)

iii) The diffusion equation

ut − D∆u = 0 ,

and the Black-Scholes equation

vt + rsvs +
1
2
σ2s2vss = rv ,

are parabolic, since a = 1, b = c = d = 0, e = −1 (for diffusion) and
a = 1, b = c = 0, d = e = 1 (for Black-Scholes) ⇒⇒⇒ ac − b2 = 0.
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Numerical Methods for PDEs

Why?
Often, no exact analytical solutions available
Provide a systematic approximation of exact solutions (e.g error
quantificiation)

Main numerical methods: (Advantages/Disadvantages)
1. Finite Diference (FD) Methods. Find discrete solutions on a

(often rectangular) grid/mesh.
(Simple / Complicated Domains, Discretised classical solutions)

2. Finite Element (FE) Methods. A class of Galerkin methods which
are based on a partition of the domain into small finite elements.
(Better in irregular domains / More complex to set up and analyze)

3. Spectral Methods. Solutions are approximated by a truncated
expansion in the eigenfunctions of some linear operator (e.g. a
truncated Fourier Series).
(Highly accurate for problems with smooth solutions/ Not so useful
on irregular domains or for problems with discontinuities)
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Summary of learning targets:

1. What is a PDE?

2. What types of PDEs exist and how are they classified?

3. What kind of numerical methods can be used? Advantages and
disadvantages between them?
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