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0 FTCS scheme for the 2D heat equation

@ The 2D ¢-method
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The heat equation in 2D

The heat equation looks in 2D as follows

Ut = Uxx + Uyy,

with solutions u(x, y, t) and approximate solutions wj’j, ~ U(X;, y, t).
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The heat equation in 2D

The heat equation looks in 2D as follows
Ut = Uxx + Uyy,

with solutions u(x, y, t) and approximate solutions W” ~ U(X;, y, t).
Now the spatial grid is 2D.

HERIOT
AT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 10 3/12



The heat equation in 2D

The heat equation looks in 2D as follows

Ut = Uxx + Uyy,

with solutions u(x, y, t) and approximate solutions wj’j, ~ U(X;, y, t).

Now the spatial grid is 2D.

Applying the same ideas as in the 1D case, i.e., we approximate uy, as
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The heat equation in 2D

The heat equation looks in 2D as follows
Ut = Uxx + Uyy,

with solutions u(x, y, t) and approximate solutions wj’j, ~ U(X;, y, t).
Now the spatial grid is 2D.

Applying the same ideas as in the 1D case, i.e., we approximate uy, as
Uy Y 67

n+1 _ n 2 2
M/j'sl Vvlal _ EW,’? _ 57)( + 57}/ w!
k = Kk T h2 h2 I
n
B W = 2w+ Wiy W 2w+ W
- 2 2
s hy

giving the scheme

n+1 _ ..,n n n n n n n
Wiyt = Wi i (Wila g — 2w+ Wik ) + (W — 2055 + W)

with ry = k/h2, r, = k/H2.
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Example: the FTCS scheme for the 2D heat equatio
Compute with the FTCS scheme two time steps of the problem

Ut = Uxx + Uyy
u(x,y,0) = sin(wx/2) sin(ry) ICs,
uO,y,t) =u(x,1,t) = u(x,0,t) =0, u(1,y,t) =sin(ry) BCs

on the unit square [0, 1] with hy = h, =1/3 and r = 0.25.
The grid for this scheme looks like this

=0 =1 =2 F3' s
® @ k=2
® @ k=1
@ L L @ k=0
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Initial conditions:

w,?, = sin(nj/6)sin(x//3),j=0,...,3;/=0,...,3
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Initial conditions:

wp, = sin(j/6) sin(x//3),j =0,...,3;1=0,...

Boundary conditions:

Wo,j = Wjo = Wj3 = 0, w; = sin(mj/3)
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Initial conditions:

wp, = sin(j/6) sin(x//3),j =0,...,3;1=0,...

Boundary conditions:

Wo,j = Wjo = W3 = 0, ws; = sin(j/3)

such that Wjo, admits the values

I\Nj|oO 1 2 3
0 |0 0 0 0
1 | 0] 0.4330 | 0.7500 | 0.8660
2 | 0]0.4330 | 0.7500 | 0.8660
3 |0 0 0 0
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First time step: Apply the FTCS scheme withj=1,2; /=1,2, n=0
to get the values of w/,

I\j|O 1 2 3
0 |0 0 0 0
1 0 | 0.2958 | 0.5123 | 0.8660
2 | 0] 0.2958 | 0.5123 | 0.8660
3 |0 0 0 0
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First time step: Apply the FTCS scheme withj=1,2; /=1,2, n=0

to get the values of w/,

I\j]|o 1 2 3
0|0 0 0 0
1 [0 ] 0.2958 | 0.5123 | 0.8660
2 | 002958 | 0.5123 | 0.8660
3 |0 0 0 0

2nd time step: Apply the FTCS scheme withj=1,2; I =1,2;, n=1

to get the values of w7

I\Nj]|oO 1 2 3
0 |0 0 0 0
1 [0 [ 0.2020 | 0.4185 | 0.8660
2 | 002020 | 0.4185 | 0.8660
3 |0 0 0 0
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First time step: Apply the FTCS scheme withj=1,2; /=1,2, n=0
to get the values of w/,

0 1 2 3

0 0 0 0
1 | 0] 0.2958 | 0.5123 | 0.8660

0

0

I\j
0

2 0.2958 | 0.5123 | 0.8660
3 0 0 0

2nd time step: Apply the FTCS scheme withj=1,2; /=1,2;, n =1
to get the values of w7

/ 1 2 3
0 0 0

jlo
0
0 | 0.2020 | 0.4185 | 0.8660
0
0

0.2020 | 0.4185 | 0.8660
0 0 0

WIN = O—

Note: The solution is symmetric about the line y = 1/2 as the ICs and
BCs satisfy also this symmetry.
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Stability of the FTCS scheme for the 2D heat equation

Main steps: The von Neumann stability method
1. Substitute w/’, = " exp(jjc) exp(ilB) into the FTCS scheme.
2. Divide through by £" exp(ijar) exp(il3) and rearrange to get an
expression for &.
3. Find conditions on the mesh ratios that guarantee |£| < 1 for all

(a, B) € [, 7).

HERIOT
AT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 10 7/12



Stability of the FTCS scheme for the 2D heat equation

Main steps: The von Neumann stability method
1. Substitute w/’, = " exp(jjc) exp(ilB) into the FTCS scheme.
2. Divide through by £" exp(ijar) exp(il3) and rearrange to get an
expression for &.
3. Find conditions on the mesh ratios that guarantee |£| < 1 for all

(a, B) € [, 7).

Step 1:
(M1 gy gla gl — g ¢nglld [ei(j—1)a _oglia ¢ e"(f“)a}
+ 1y €7 el [ 1217 2615 4 gl(H41)5]
e
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Stability of the FTCS scheme for the 2D heat equation

Main steps: The von Neumann stability method

1. Substitute Wj, = " exp(ijja) exp(ilB) into the FTCS scheme.
2. Divide through by £" exp(ijar) exp(il3) and rearrange to get an
expression for &.

3. Find conditions on the mesh ratios that guarantee |£| < 1 for all

(a, B) € [, 7).

Step 1:
(€n+1 L giv gl — N gl [ei(j_na _ gl 4 ei(j+1)a}
+r,€" e [ei(l—1),8 _2¢lP 4 ei(/+1)ﬁ}
Step 2:
£—1 = rx( e 2+e’°‘> +r (e"5—2+e"5)

rye 2
= —4rysin §—4rysm >
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Stability of the FTCS scheme for the 2D heat equation

Main steps: The von Neumann stability method

1. Substitute Wj, = " exp(ijja) exp(ilB) into the FTCS scheme.
2. Divide through by £" exp(ijar) exp(il3) and rearrange to get an
expression for &.

3. Find conditions on the mesh ratios that guarantee [£| < 1 for all
(o, B) € [-, 7]2.
Step 1:

(M1 gy gla gl — g ¢nglld [ei(j_na _oglia | e"(f“)a}
+r,€" e [ei(l—1),8 _2¢lP 4 ei(/+1)6}
Step 2:
E-1 = rx( e @ 2+e’°‘> iy (e"5—2+e"ﬁ)
2B

. (6]
= —dnesin® - —4r,sin® C
2 2
o _ 22 a _ A2 (B
Note: (2cos o — 2) = —4sin” § and (2cos f —2) = —4sin° § Itﬁmg
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Step 3: /) On a square spatial mesh (hy = hy): We get
2 5

g2 @
§=1—4rsin > —4r sin where r = ry =1y.
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Step 3: /) On a square spatial mesh (hy = hy): We get
2 ﬁ

in2 &
§=1-—4rsin 5~ 4r sin where r = ry = ry.

We need to guarantee that |£| < 1. The max and min values of £ occur
at the maximum and minimum values of the sine functions (because
r>0),i.e.at(«,f) = (£, £nr) and («, 5) = (0, 0) respectively.

HERIOT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 10 8/12



Step 3: /) On a square spatial mesh (hy = hy): We get

25

in2 &
§=1-—4rsin 5~ 4r sin where r = ry = ry.

We need to guarantee that |£| < 1. The max and min values of £ occur
at the maximum and minimum values of the sine functions (because
r>0),i.e.at(«,f) = (£, £nr) and («, 5) = (0, 0) respectively.

So
—-1<1-8r<¢é<1 foralla, g €[—m,mnl.

For stability we therefore require 1 — 8r > —1, i.e. the scheme is only
stable when r < 1/4.
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ii) On a general spatial mesh with hy # h,: We have

. o ) 6
&E=1—4r,sin §—4ry sin 2
with
max§ =1, min{=1—4r—4r,
a76 a?ﬁ
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ii) On a general spatial mesh with hy # h,: We have

. o .26
E=1—4r, sin §—4rysm 2

with

)

maxé =1, miné=1—4r, —4r,
aﬁg a,ﬂg X y

so that the scheme is stable if and only if

-1<1-4rc—4r, <1,
1>4(rc+r)—1>-1,
224(rx+ry)20a

1
0§&+@§§
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Remark: In the higher dimensional case it is even more important
than before to develop schemes which are more efficient than the
FTCS scheme:

i) At each time level, there is much more work (i.e. M? equations to
calculate).

i) When ry = r,, hy = hy, then the stability is twice as bad as in the 1D
case.
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Remark: In the higher dimensional case it is even more important
than before to develop schemes which are more efficient than the
FTCS scheme:

i) At each time level, there is much more work (i.e. M? equations to
calculate).

i) When ry = r,, hy = hy, then the stability is twice as bad as in the 1D
case.

As in 1D the implicit schemes were more stable than the explicit FTCS
scheme, we will now consider a 2D version of the 8-method.
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The 2D 6-method

For simplicity we work with 6 = 2, but the same principles apply for
general values of § > 0. Write

W-rH_1 —wr F; 1 52 1 52
5l L ton _ 5% n+1 n n+1
T - ) 3
oWl 2wl wly Wy 2w+ W
- 2h2 2h?
n+1 n+1 n+1 n+ n+1 n+1
Wiy — 2w +W+1/+W;/ — 2w+ Wy
2h§ 2h§
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The 2D 6-method

For simplicity we work with 6 = 2, but the same principles apply for
general values of § > 0. Write

n+1 _ n 2 2
W/ EW.” —157)( w!? + wH 19 w4+ wit
n
W 2W W W — 2w+ W
2h2 2h2

an—1 o 2Wn+1 + Wn+1 Wn o 2Wn+1 + Wn+1
j j+1,1 + J,1—1 Jol+1

2 2

2hx 2hy

and taking the unknown w’"" to the left gives

1 2..,N
—I’yéij’/.

1
*fx(s)z(VVj?/ <+ >

1 2,,,N
_ +1_ ph
ry(s}/W/J = WA 2

n+1 1 2 ,,,0+1
wim = Sr0sw 5

2
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Disadvantages of the 2D §-method

@ Scheme shows five unknowns

@ At each interior point (x;, y;), there are (J — 1) x (L — 1) equations
fortheunknownsw”+‘,j_1 =1 =1,.. L—1.

@ The (sparse) matrix does not have a simple tri-diagonal structure
anymore.
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Disadvantages of the 2D #-method

@ Scheme shows five unknowns

@ At each interior point (x;, y;), there are (J — 1) x (L — 1) equations
for the unknowns w/;™", j=1,....J =1/ =1,... L —1.

@ The (sparse) matrix does not have a simple tri-diagonal structure
anymore.

Remark: A system of N equations generally requires %N3 floating point
operations to solve it using Gaussian elimination. Hence, the above 2D

scheme will require approximately $J3L3 operations.
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Disadvantages of the 2D #-method

@ Scheme shows five unknowns

@ At each interior point (x;, y;), there are (J — 1) x (L — 1) equations
fortheunknownsw”*‘,j_1 =1 =1,.. L—1.

@ The (sparse) matrix does not have a simple tri-diagonal structure
anymore.

Remark: A system of N equations generally requires %Ns floating point
operations to solve it using Gaussian elimination. Hence, the above 2D
scheme will require approximately $J3L3 operations.

= Already small J = L = 10 leads to 3 x 10° operations at each
time step.
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