Numerical Methods for PDEs

Finite differences in higher spatial dimensions

(Lecture 10, Week 4)

Markus Schmuck

Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

Edinburgh, February 2, 2013

2/12

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 10

The heat equation looks in 2D as follows

 $u_t = u_{xx} + u_{yy} \,,$

with solutions u(x, y, t) and approximate solutions $w_{j,l}^n \approx u(x_j, y_l, t_n)$. Now the spatial grid is 2D.

Applying the same ideas as in the 1D case, i.e., we approximate u_{yy} as u_{xx} by δ_y^2

$$\frac{w_{j,l}^{n+1} - w_{j,l}^{n}}{k} = \frac{F_{t}}{k} w_{j,l}^{n} = \left(\frac{\delta_{x}^{2}}{h_{x}^{2}} + \frac{\delta_{y}^{2}}{h_{y}^{2}}\right) w_{j,l}^{n}$$
$$= \frac{w_{j-1,l}^{n} - 2w_{j,l}^{n} + w_{j+1,l}^{n}}{h_{x}^{2}} + \frac{w_{j,l-1}^{n} - 2w_{j,l}^{n} + w_{j,l+1}^{n}}{h_{y}^{2}}$$

giving the scheme

 $w_{j,l}^{n+1} = w_{j,l}^{n} + r_x(w_{j-1,l}^{n} - 2w_{j,l}^{n} + w_{j+1,l}^{n}) + r_y(w_{j,l-1}^{n} - 2w_{j,l}^{n} + w_{j,l+1}^{n})$

The heat equation looks in 2D as follows

 $u_t=u_{xx}+u_{yy}\,,$

with solutions u(x, y, t) and approximate solutions $w_{j,l}^n \approx u(x_j, y_l, t_n)$. Now the spatial grid is 2D.

Applying the same ideas as in the 1D case, i.e., we approximate u_{yy} as u_{xx} by δ_y^2

$$\frac{w_{j,l}^{n+1} - w_{j,l}^{n}}{k} = \frac{F_{t}}{k} w_{j,l}^{n} = \left(\frac{\delta_{x}^{2}}{h_{x}^{2}} + \frac{\delta_{y}^{2}}{h_{y}^{2}}\right) w_{j,l}^{n}$$
$$= \frac{w_{j-1,l}^{n} - 2w_{j,l}^{n} + w_{j+1,l}^{n}}{h_{x}^{2}} + \frac{w_{j,l-1}^{n} - 2w_{j,l}^{n} + w_{j,l+1}^{n}}{h_{y}^{2}}$$

giving the scheme

 $w_{j,l}^{n+1} = w_{j,l}^{n} + r_x(w_{j-1,l}^{n} - 2w_{j,l}^{n} + w_{j+1,l}^{n}) + r_y(w_{j,l-1}^{n} - 2w_{j,l}^{n} + w_{j,l+1}^{n})$

The heat equation looks in 2D as follows

 $u_t=u_{xx}+u_{yy}\,,$

with solutions u(x, y, t) and approximate solutions $w_{j,l}^n \approx u(x_j, y_l, t_n)$. Now the spatial grid is 2D.

Applying the same ideas as in the 1D case, i.e., we approximate u_{yy} as u_{xx} by δ_y^2

$$\frac{w_{j,l}^{n+1} - w_{j,l}^{n}}{k} = \frac{F_{t}}{k} w_{j,l}^{n} = \left(\frac{\delta_{x}^{2}}{h_{x}^{2}} + \frac{\delta_{y}^{2}}{h_{y}^{2}}\right) w_{j,l}^{n}$$
$$= \frac{w_{j-1,l}^{n} - 2w_{j,l}^{n} + w_{j+1,l}^{n}}{h_{x}^{2}} + \frac{w_{j,l-1}^{n} - 2w_{j,l}^{n} + w_{j,l+1}^{n}}{h_{y}^{2}}$$

giving the scheme

 $w_{j,l}^{n+1} = w_{j,l}^{n} + r_x(w_{j-1,l}^{n} - 2w_{j,l}^{n} + w_{j+1,l}^{n}) + r_y(w_{j,l-1}^{n} - 2w_{j,l}^{n} + w_{j,l+1}^{n})$

The heat equation looks in 2D as follows

 $u_t=u_{xx}+u_{yy}\,,$

with solutions u(x, y, t) and approximate solutions $w_{j,l}^n \approx u(x_j, y_l, t_n)$. Now the spatial grid is 2D.

Applying the same ideas as in the 1D case, i.e., we approximate u_{yy} as u_{xx} by δ_y^2

$$\frac{\frac{w_{j,l}^{n+1} - w_{j,l}^{n}}{k} = \frac{F_{t}}{k} w_{j,l}^{n} = \left(\frac{\delta_{x}^{2}}{h_{x}^{2}} + \frac{\delta_{y}^{2}}{h_{y}^{2}}\right) w_{j,l}^{n}$$
$$= \frac{w_{j-1,l}^{n} - 2w_{j,l}^{n} + w_{j+1,l}^{n}}{h_{x}^{2}} + \frac{w_{j,l-1}^{n} - 2w_{j,l}^{n} + w_{j,l+1}^{n}}{h_{y}^{2}}$$

giving the scheme

 $w_{j,l}^{n+1} = w_{j,l}^n + r_x(w_{j-1,l}^n - 2w_{j,l}^n + w_{j+1,l}^n) + r_y(w_{j,l-1}^n - 2w_{j,l}^n + w_{j,l+1}^n)$ with $r_x = k/h_x^2$, $r_y = k/h_y^2$.

Example: the FTCS scheme for the 2D heat equation

Compute with the FTCS scheme two time steps of the problem

 $u_t = u_{xx} + u_{yy}$ $u(x, y, 0) = \sin(\pi x/2)\sin(\pi y)$ $u(0, y, t) = u(x, 1, t) = u(x, 0, t) = 0, \ u(1, y, t) = \sin(\pi y)$ BCs,

on the unit square [0, 1] with $h_x = h_y = 1/3$ and r = 0.25. The grid for this scheme looks like this

Initial conditions:

$$w_{j,l}^0 = \sin(\pi j/6) \sin(\pi l/3), j = 0, \dots, 3; l = 0, \dots, 3$$

Boundary conditions:

$$w_{0,j} = w_{j,0} = w_{j,3} = 0, w_{3,j} = \sin(\pi j/3)$$

such that $w_{i,l}^0$ admits the values

	1	

Initial conditions:

$$w_{j,l}^0 = \sin(\pi j/6) \sin(\pi l/3), j = 0, \dots, 3; l = 0, \dots, 3$$

Boundary conditions:

$$w_{0,j} = w_{j,0} = w_{j,3} = 0, w_{3,j} = \sin(\pi j/3)$$

such that $w_{i,l}^0$ admits the values

	1	

Initial conditions:

$$w_{j,l}^0 = \sin(\pi j/6) \sin(\pi l/3), j = 0, \dots, 3; l = 0, \dots, 3$$

Boundary conditions:

$$w_{0,j} = w_{j,0} = w_{j,3} = 0, w_{3,j} = \sin(\pi j/3)$$

such that $w_{i,l}^0$ admits the values

$I \setminus j$	0	1	2	3
0	0	0	0	0
1	0	0.4330	0.7500	0.8660
2	0	0.4330	0.7500	0.8660
3	0	0	0	0

First time step: Apply the FTCS scheme with j = 1, 2; l = 1, 2, n = 0 to get the values of $w_{i,l}^1$

$I \setminus j$	0	1	2	3
0	0	0	0	0
1	0	0.2958	0.5123	0.8660
2	0	0.2958	0.5123	0.8660
3	0	0	0	0

2nd time step: Apply the FTCS scheme with j = 1, 2; l = 1, 2; n = 1 to get the values of $w_{i,l}^2$

	1	

Note: The solution is symmetric about the line y = 1/2 as the ICs and BCs satisfy also this symmetry.

M. Schmuck (Heriot-Watt University)

Numerical Methods for PDEs, Lecture 10

First time step: Apply the FTCS scheme with j = 1, 2; l = 1, 2, n = 0 to get the values of $w_{i,l}^1$

$I \setminus j$	0	1	2	3
0	0	0	0	0
1	0	0.2958	0.5123	0.8660
2	0	0.2958	0.5123	0.8660
3	0	0	0	0

2nd time step: Apply the FTCS scheme with j = 1, 2; l = 1, 2; n = 1 to get the values of $w_{i,l}^2$

$I \setminus j$	0	1	2	3
0	0	0	0	0
1	0	0.2020	0.4185	0.8660
2	0	0.2020	0.4185	0.8660
3	0	0	0	0

Note: The solution is symmetric about the line y = 1/2 as the ICs and BCs satisfy also this symmetry.

M. Schmuck (Heriot-Watt University)

Numerical Methods for PDEs, Lecture 10

First time step: Apply the FTCS scheme with j = 1, 2; l = 1, 2, n = 0 to get the values of $w_{i,l}^1$

$I \setminus j$	0	1	2	3
0	0	0	0	0
1	0	0.2958	0.5123	0.8660
2	0	0.2958	0.5123	0.8660
3	0	0	0	0

2nd time step: Apply the FTCS scheme with j = 1, 2; l = 1, 2; n = 1 to get the values of $w_{i,l}^2$

$I \setminus j$	0	1	2	3
0	0	0	0	0
1	0	0.2020	0.4185	0.8660
2	0	0.2020	0.4185	0.8660
3	0	0	0	0

Note: The solution is symmetric about the line y = 1/2 as the ICs and BCs satisfy also this symmetry.

Main steps: The von Neumann stability method

- **1.** Substitute $w_{i,l}^n = \xi^n \exp(ij\alpha) \exp(il\beta)$ into the FTCS scheme.
- **2.** Divide through by $\xi^n \exp(ij\alpha) \exp(il\beta)$ and rearrange to get an expression for ξ .
- 3. Find conditions on the mesh ratios that guarantee |ξ| ≤ 1 for all (α, β) ∈ [-π, π]².
 Step 1:

$$(\xi^{n+1} - \xi^n) e^{ij\alpha} e^{il\beta} = r_x \xi^n e^{il\beta} \left[e^{i(j-1)\alpha} - 2e^{ij\alpha} + e^{i(j+1)\alpha} \right] + r_y \xi^n e^{ij\alpha} \left[e^{i(l-1)\beta} - 2e^{il\beta} + e^{i(l+1)\beta} \right]$$

Step 2:

$$\xi - 1 = r_x \left(e^{-i\alpha} - 2 + e^{i\alpha} \right) + r_y \left(e^{-i\beta} - 2 + e^{i\beta} \right)$$
$$= -4r_x \sin^2 \frac{\alpha}{2} - 4r_y \sin^2 \frac{\beta}{2}.$$

Note: $(2\cos \alpha - 2) = -4\sin^2 \frac{\alpha}{2}$ and $(2\cos \beta - 2) = -4$

M. Schmuck (Heriot-Watt University)

Main steps: The von Neumann stability method

- **1.** Substitute $w_{i,l}^n = \xi^n \exp(ij\alpha) \exp(il\beta)$ into the FTCS scheme.
- **2.** Divide through by $\xi^n \exp(ij\alpha) \exp(il\beta)$ and rearrange to get an expression for ξ .
- 3. Find conditions on the mesh ratios that guarantee $|\xi| \le 1$ for all $(\alpha, \beta) \in [-\pi, \pi]^2$. Step 1:

$$(\xi^{n+1} - \xi^n) e^{ij\alpha} e^{il\beta} = r_x \xi^n e^{il\beta} \left[e^{i(j-1)\alpha} - 2e^{ij\alpha} + e^{i(j+1)\alpha} \right] + r_y \xi^n e^{ij\alpha} \left[e^{i(l-1)\beta} - 2e^{il\beta} + e^{i(l+1)\beta} \right]$$

Step 2:

$$\xi - 1 = r_x \left(e^{-i\alpha} - 2 + e^{i\alpha} \right) + r_y \left(e^{-i\beta} - 2 + e^{i\beta} \right)$$
$$= -4r_x \sin^2 \frac{\alpha}{2} - 4r_y \sin^2 \frac{\beta}{2}.$$

Note: $(2\cos\alpha - 2) = -4\sin^2\frac{\alpha}{2}$ and $(2\cos\beta - 2) = -4\sin^2\frac{\alpha}{2}$

M. Schmuck (Heriot-Watt University)

Main steps: The von Neumann stability method

- **1.** Substitute $w_{i,l}^n = \xi^n \exp(ij\alpha) \exp(il\beta)$ into the FTCS scheme.
- **2.** Divide through by $\xi^n \exp(ij\alpha) \exp(il\beta)$ and rearrange to get an expression for ξ .
- 3. Find conditions on the mesh ratios that guarantee $|\xi| \le 1$ for all $(\alpha, \beta) \in [-\pi, \pi]^2$. Step 1:

$$(\xi^{n+1} - \xi^n) e^{ij\alpha} e^{il\beta} = r_x \xi^n e^{il\beta} \left[e^{i(j-1)\alpha} - 2e^{ij\alpha} + e^{i(j+1)\alpha} \right] + r_y \xi^n e^{ij\alpha} \left[e^{i(l-1)\beta} - 2e^{il\beta} + e^{i(l+1)\beta} \right]$$

Step 2:

$$\xi - 1 = r_x \left(e^{-i\alpha} - 2 + e^{i\alpha} \right) + r_y \left(e^{-i\beta} - 2 + e^{i\beta} \right)$$
$$= -4r_x \sin^2 \frac{\alpha}{2} - 4r_y \sin^2 \frac{\beta}{2}.$$

M. Schmuck (Heriot-Watt University) Numerical Meth

Numerical Methods for PDEs, Lecture 10

Main steps: The von Neumann stability method

- **1.** Substitute $w_{i,l}^n = \xi^n \exp(ij\alpha) \exp(il\beta)$ into the FTCS scheme.
- **2.** Divide through by $\xi^n \exp(ij\alpha) \exp(il\beta)$ and rearrange to get an expression for ξ .
- 3. Find conditions on the mesh ratios that guarantee $|\xi| \le 1$ for all $(\alpha, \beta) \in [-\pi, \pi]^2$. Step 1:

$$(\xi^{n+1} - \xi^n) e^{ij\alpha} e^{il\beta} = r_x \xi^n e^{il\beta} \left[e^{i(j-1)\alpha} - 2e^{ij\alpha} + e^{i(j+1)\alpha} \right] + r_y \xi^n e^{ij\alpha} \left[e^{i(l-1)\beta} - 2e^{il\beta} + e^{i(l+1)\beta} \right]$$

Step 2:

$$\xi - 1 = r_x \left(e^{-i\alpha} - 2 + e^{i\alpha} \right) + r_y \left(e^{-i\beta} - 2 + e^{i\beta} \right)$$
$$= -4r_x \sin^2 \frac{\alpha}{2} - 4r_y \sin^2 \frac{\beta}{2}.$$

Note: $(2\cos \alpha - 2) = -4\sin^2 \frac{\alpha}{2}$ and $(2\cos \beta - 2) = -4\sin^2 \frac{\beta}{2}$

M. Schmuck (Heriot-Watt University)

Numerical Methods for PDEs, Lecture 10

Step 3: *i*) On a square spatial mesh ($h_x = h_y$): We get

$$\xi = 1 - 4r \sin^2 \frac{\alpha}{2} - 4r \sin^2 \frac{\beta}{2} \quad \text{where } r = r_x = r_y$$

We need to guarantee that $|\xi| \le 1$. The max and min values of ξ occur at the maximum and minimum values of the sine functions (because $r \ge 0$), i.e. at $(\alpha, \beta) = (\pm \pi, \pm \pi)$ and $(\alpha, \beta) = (0, 0)$ respectively.

So

$-1 \leq 1 - 8r \leq \xi \leq 1$ for all $lpha, eta \in [-\pi, \pi].$

For stability we therefore require $1 - 8r \ge -1$, i.e. the scheme is only stable when $r \le 1/4$.

Step 3: *i*) On a square spatial mesh ($h_x = h_y$): We get

$$\xi = 1 - 4r \sin^2 \frac{\alpha}{2} - 4r \sin^2 \frac{\beta}{2} \quad \text{where } r = r_x = r_y$$

We need to guarantee that $|\xi| \le 1$. The max and min values of ξ occur at the maximum and minimum values of the sine functions (because $r \ge 0$), i.e. at $(\alpha, \beta) = (\pm \pi, \pm \pi)$ and $(\alpha, \beta) = (0, 0)$ respectively.

So

 $-1 \leq 1 - 8r \leq \xi \leq 1$ for all $lpha, eta \in [-\pi, \pi].$

For stability we therefore require $1 - 8r \ge -1$, i.e. the scheme is only stable when $r \le 1/4$.

Step 3: *i*) On a square spatial mesh ($h_x = h_y$): We get

$$\xi = 1 - 4r \sin^2 \frac{\alpha}{2} - 4r \sin^2 \frac{\beta}{2} \quad \text{where } r = r_x = r_y$$

We need to guarantee that $|\xi| \le 1$. The max and min values of ξ occur at the maximum and minimum values of the sine functions (because $r \ge 0$), i.e. at $(\alpha, \beta) = (\pm \pi, \pm \pi)$ and $(\alpha, \beta) = (0, 0)$ respectively.

So

$$-1 \leq 1 - 8r \leq \xi \leq 1$$
 for all $\alpha, \beta \in [-\pi, \pi]$.

For stability we therefore require $1 - 8r \ge -1$, i.e. the scheme is only stable when $r \le 1/4$.

ii) On a general spatial mesh with $h_x \neq h_y$: We have

$$\xi = 1 - 4r_x \sin^2 rac{lpha}{2} - 4r_y \sin^2 rac{eta}{2}$$

with

$$\max_{\alpha,\beta}\xi=1,\quad \min_{\alpha,\beta}\xi=1-4r_x-4r_y$$

so that the scheme is stable if and only if

$$-1 \le 1 - 4r_x - 4r_y \le 1,$$

$$1 \ge 4(r_x + r_y) - 1 \ge -1,$$

$$2 \ge 4(r_x + r_y) \ge 0,$$

$$0 \le r_x + r_y \le \frac{1}{2}.$$

ii) On a general spatial mesh with $h_x \neq h_y$: We have

$$\xi = 1 - 4r_x \sin^2 \frac{\alpha}{2} - 4r_y \sin^2 \frac{\beta}{2},$$

with

$$\max_{\alpha,\beta}\xi=1,\quad \min_{\alpha,\beta}\xi=1-4r_x-4r_y$$

so that the scheme is stable if and only if

$$-1 \le 1 - 4r_x - 4r_y \le 1,$$

$$1 \ge 4(r_x + r_y) - 1 \ge -1,$$

$$2 \ge 4(r_x + r_y) \ge 0,$$

$$0 \le r_x + r_y \le \frac{1}{2}.$$

Remark: In the higher dimensional case it is even more important than before to develop schemes which are more efficient than the FTCS scheme:

i) At each time level, there is much more work (i.e. M^2 equations to calculate).

ii) When $r_x = r_y$, $h_x = h_y$, then the stability is twice as bad as in the 1D case.

As in 1D the implicit schemes were more stable than the explicit FTCS scheme, we will now consider a 2D version of the θ -method.

Remark: In the higher dimensional case it is even more important than before to develop schemes which are more efficient than the FTCS scheme:

i) At each time level, there is much more work (i.e. M^2 equations to calculate).

ii) When $r_x = r_y$, $h_x = h_y$, then the stability is twice as bad as in the 1D case.

As in 1D the implicit schemes were more stable than the explicit FTCS scheme, we will now consider a 2D version of the θ -method.

The 2D θ -method

For simplicity we work with $\theta = \frac{1}{2}$, but the same principles apply for general values of $\theta > 0$. Write

$$\frac{w_{j,l}^{n+1} - w_{j,l}^{n}}{k} = \frac{F_{t}}{k} w_{j,l}^{n} = \frac{1}{2} \frac{\delta_{x}^{2}}{h_{x}^{2}} \left(w_{j,l}^{n} + w_{j,l}^{n+1} \right) + \frac{1}{2} \frac{\delta_{y}^{2}}{h_{y}^{2}} \left(w_{j,l}^{n} + w_{j,l}^{n+1} \right) \\
= \frac{w_{j-1,l}^{n} - 2w_{j,l}^{n} + w_{j+1,l}^{n}}{2h_{x}^{2}} + \frac{w_{j,l-1}^{n} - 2w_{j,l}^{n} + w_{j,l+1}^{n}}{2h_{y}^{2}} + \\
+ \frac{w_{j-1,l}^{n+1} - 2w_{j,l}^{n+1} + w_{j+1,l}^{n+1}}{2h_{x}^{2}} + \frac{w_{j,l-1}^{n-1} - 2w_{j,l}^{n+1} + w_{j,l+1}^{n+1}}{2h_{y}^{2}}$$

and taking the unknown $w_{j,l}^{n+1}$ to the left gives

$$w_{j,l}^{n+1} - \frac{1}{2}r_x\delta_x^2w_{j,l}^{n+1} - \frac{1}{2}r_y\delta_y^2w_{j,l}^{n+1} = w_{j,l}^n + \frac{1}{2}r_x\delta_x^2w_{j,l}^n + \frac{1}{2}r_y\delta_y^2w_{j,l}^n.$$

The 2D θ -method

For simplicity we work with $\theta = \frac{1}{2}$, but the same principles apply for general values of $\theta > 0$. Write

$$\frac{w_{j,l}^{n+1} - w_{j,l}^{n}}{k} = \frac{F_{t}}{k} w_{j,l}^{n} = \frac{1}{2} \frac{\delta_{x}^{2}}{h_{x}^{2}} \left(w_{j,l}^{n} + w_{j,l}^{n+1} \right) + \frac{1}{2} \frac{\delta_{y}^{2}}{h_{y}^{2}} \left(w_{j,l}^{n} + w_{j,l}^{n+1} \right) \\
= \frac{w_{j-1,l}^{n} - 2w_{j,l}^{n} + w_{j+1,l}^{n}}{2h_{x}^{2}} + \frac{w_{j,l-1}^{n} - 2w_{j,l}^{n} + w_{j,l+1}^{n}}{2h_{y}^{2}} + \\
+ \frac{w_{j-1,l}^{n+1} - 2w_{j,l}^{n+1} + w_{j+1,l}^{n+1}}{2h_{x}^{2}} + \frac{w_{j,l-1}^{n-1} - 2w_{j,l}^{n+1} + w_{j,l+1}^{n+1}}{2h_{y}^{2}}$$

and taking the unknown $w_{j,l}^{n+1}$ to the left gives

$$w_{j,l}^{n+1} - \frac{1}{2}r_x\delta_x^2w_{j,l}^{n+1} - \frac{1}{2}r_y\delta_y^2w_{j,l}^{n+1} = w_{j,l}^n + \frac{1}{2}r_x\delta_x^2w_{j,l}^n + \frac{1}{2}r_y\delta_y^2w_{j,l}^n.$$

Disadvantages of the 2D θ -method

- Scheme shows five unknowns
- At each interior point (x_j, y_l), there are (J − 1) × (L − 1) equations for the unknowns wⁿ⁺¹_{i,l}, j = 1,..., J − 1; l = 1,..., L − 1.
- The (sparse) matrix does not have a simple tri-diagonal structure anymore.

Remark: A system of *N* equations generally requires $\frac{1}{3}N^3$ floating point operations to solve it using Gaussian elimination. Hence, the above 2D scheme will require approximately $\frac{1}{3}J^3L^3$ operations.

Already small J = L = 10 leads to 3×10^5 operations at each time step.

Disadvantages of the 2D θ -method

- Scheme shows five unknowns
- At each interior point (x_j, y_l), there are (J − 1) × (L − 1) equations for the unknowns wⁿ⁺¹_{i,l}, j = 1,..., J − 1; l = 1,..., L − 1.
- The (sparse) matrix does not have a simple tri-diagonal structure anymore.

Remark: A system of *N* equations generally requires $\frac{1}{3}N^3$ floating point operations to solve it using Gaussian elimination. Hence, the above 2D scheme will require approximately $\frac{1}{3}J^3L^3$ operations.

Already small J = L = 10 leads to 3×10^5 operations at each time step.

Disadvantages of the 2D θ -method

- Scheme shows five unknowns
- At each interior point (x_j, y_l), there are (J − 1) × (L − 1) equations for the unknowns wⁿ⁺¹_{i,l}, j = 1,..., J − 1; l = 1,..., L − 1.
- The (sparse) matrix does not have a simple tri-diagonal structure anymore.

Remark: A system of *N* equations generally requires $\frac{1}{3}N^3$ floating point operations to solve it using Gaussian elimination. Hence, the above 2D scheme will require approximately $\frac{1}{3}J^3L^3$ operations.

Already small J = L = 10 leads to 3×10^5 operations at each time step.

