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A more practical 2D scheme: The ADI method

For u smooth enough, the Taylor expansion of u(xj + hx , yl , tn) admits
an Exponential operator notation

u(xj+hx , yl , tn) =

[
u + hx

∂u
∂x

+
h2

x
2!

∂2u
∂x2 +

h3
x

3!
∂3u
∂x3 + . . .

]
(xj ,yl ,tn)

=

[
1 + hx

∂

∂x
+

h2
x

2!
∂2

∂x2 +
h3

x
3!

∂3

∂x3 + . . .

]
u |(xj ,yl ,tn)

= exp
(

hx
∂

∂x

)
u |(xj ,yl ,tn).

Similarly (missing out the steps in between) we can write

u(xj , yl + hy , tn) = exp
(

hy
∂

∂y

)
u |(xj ,yl ,tn)

and

u(xj , yl , tn + k) = exp
(

k
∂

∂t

)
u |(xj ,yl ,tn)
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With the help of this notation, we derive a different implicit scheme for

ut = uxx + uyy .

Suppose that u(x , y , t) is a smooth solution of the PDE. Taylor
expanding u(x , y , tn + k) about (x , y , tn) gives

u(x , y , tn+k) = exp
(

k
∂

∂t

)
u |(x ,y ,tn) .

Use ea = ea/2 · ea/2 to rewrite this as

u|t=tn+k = exp
(

k
2
∂

∂t

)
exp

(
k
2
∂

∂t

)
u|t=tn

and hence

exp
(
−k

2
∂

∂t

)
u|t=tn+k︸ ︷︷ ︸

new time-level

= exp
(

k
2
∂

∂t

)
u|t=tn︸ ︷︷ ︸

old time-level

. [∗]
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We now use the fact that u solves the PDE to write

exp
(
±k

2
∂

∂t

)
u = exp

(
±k

2

[
∂2

∂x2 +
∂2

∂y2

])
u

= exp
(
±k

2
∂2

∂x2

)
exp

(
±k

2
∂2

∂y2

)
u

(using ea+b = ea · eb). Plugging this into [∗] gives

exp
(
−k

2
∂2

∂x2

)
exp

(
−k

2
∂2

∂y2

)
u|t=tn+k

= exp
(

k
2

∂2

∂x2

)
exp

(
k
2

∂2

∂y2

)
u|t=tn .

We now chop the exponentials at first order (e±q ≈ 1 ± q) to get(
1 − k

2
∂2

∂x2

)(
1 − k

2
∂2

∂y2

)
u|t=tn+k ≈

(
1 +

k
2

∂2

∂x2

)(
1 +

k
2

∂2

∂y2

)
u|t=tn ,

and with second central differences in space leads to(
1 − rx

2
δ2

x

)(
1 −

ry

2
δ2

y

)
wn+1

j,l =
(

1 +
rx

2
δ2

x

)(
1 +

ry

2
δ2

y

)
wn

j,l ,

where rx , ry defined as before.
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The scheme(
1 − rx

2
δ2

x

)(
1 −

ry

2
δ2

y

)
wn+1

j,l =
(

1 +
rx

2
δ2

x

)(
1 +

ry

2
δ2

y

)
wn

j,l ,

it is much easier and quicker to use than it looks as it splits into two
stages with an intermediate quantity vj,l :=

(
1 − ry

2 δ
2
y
)

wn+1
j,l :

Stage 1:
(
1 − rx

2 δ
2
x
)
vj,l =

(
1 +

ry
2 δ

2
y
)

wn
j,l

Stage 2:
(
1 − ry

2 δ
2
y
)

wn+1
j,l =

(
1 + rx

2 δ
2
x
)
vj,l

ADI scheme

The name ADI comes from this idea of alternately solving along the
x−direction and y−direction.

x

y

x

y

Stage 1 (on left), Stage 2 (on right)M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 11 6/ 7



The two step splitting solves the full scheme: Applying
(
1 − rx

2 δ
2
x
)

to Stage 2 gives(
1 − rx

2
δ2

x

)(
1 −

ry

2
δ2

y

)
wn+1

j,l =
(

1 − rx

2
δ2

x

)(
1 +

rx

2
δ2

x

)
vj,l

=
(

1 +
rx

2
δ2

x

)(
1 − rx

2
δ2

x

)
vj,l (difference operators commute (Why?))

=
(

1 +
rx

2
δ2

x

)(
1 +

ry

2
δ2

y

)
wn

j,l by Stage 1.

Advantages:
Faster than 2D θ-method: Matrices are tridiagonal and involve
only J or L unknowns with operations of O(JL) compared to
O(J3L3) (for the θ-scheme).

Exercise for the remaining part of today’s lecture:
Show that the 2D ADI scheme is unconditionally stable.

The generalisation to 3D (with 2 intermediate variables) of the 2D
ADI is not unconditionally stable!
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