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A more practical 2D scheme: The ADI method

For u smooth enough, the Taylor expansion of u(x; + hy, v, t;) admits
an Exponential operator notation
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Similarly (missing out the steps in between) we can write

U()(j+hx,y[, tn) = |:U + hx

0
u(xj; yi+ hy, tn) = exp (hya> Ul .1,
y
and P
U(Xj,}/la h + k) = exp <k8t> . ’(va}’htn)
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With the help of this notation, we derive a different implicit scheme for

Suppose that u(x, y, t) is a smooth solution of the PDE. Taylor
expanding u(x, y, t, + k) about (x, y, t,) gives

]
u(x y, t+k) = exp <k6t> Uiy -
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With the help of this notation, we derive a different implicit scheme for

Suppose that u(x, y, t) is a smooth solution of the PDE. Taylor
expanding u(x, y, t, + k) about (x, y, t,) gives

0
u(x,y,th+k) = exp <k6t> Ul (xy )
Use e@ = e@/2 . ¢@/2 tg rewrite this as

ko k o
Ult—gyik = €XP (281‘) A (282‘) Ulpy,

and hence

exp ) Uli_; o = EXP L0} Wl - [*]
209t) =ik 29t) 't=h

new time-level old time-level
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We now use the fact that u solves the PDE to write
exp (i%%) u = exp (j:g [88—; T g)—;D u
exp (igaa—;) exp (i%ﬁ—}l) u
(using e = &7 - €°). Plugging this into [«] gives
exp <—k82> exp <—k82> ul,_
2 0x2 29y2 ) "=tk
= exp <k82> exp <k62> Ul -
2 0x2 29y2 ) "=t
We now chop the exponentials at first order (e*9 ~ 1 + g) to get
(=52 (-5 um (14 55) (1455
2 9x2 2 9y2 ) "=tk 2 0x? 29y2 ) "=t
and with second central differences in space leads to
(1-52%) (1 - 328) wir' = (1+ 528) (1 + 595w

where ry, r, defined as before.
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The scheme

(1-28) (1= 35) wir' = (1 + 3%) (1+ 35) i

it is much easier and quicker to use than it looks as it splits into two
stages with an intermediate quantity v;, := (1 — %62) w/} ":

/I
Stage1: (1-%6%)vy = (1+3%5)w)

ADI scheme
Stage2: (1-32)w/™' = (1+5%02)vy

The name ADI comes from this idea of alternately solving along the
x—direction and y—direction.
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The two step splitting solves the full scheme: Applying (1 — %4%)
to Stage 2 gives

(-50) (1~ 59) w7 = 1~ 58) 0+ 59

— (14 252) (1= 152 v, (difference operators commute (Why?)
(1+32%) (1-2%)

— (1 + %(5)2() (1 2y5§) w/, by Stage 1.
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The two step splitting solves the full scheme: Applying (1 — %4%)
to Stage 2 gives

(1-5%) (1=38)wii" = (1-3%) (1+5%) w

— (1 + %5)2() (1 — 552> v, (difference operators commute (Why?)
_ Ix s2 Ty 52\ wn
= (1 + 5 5X) (1 5 5y) i) by Stage 1.

Advantages:

Faster than 2D #-method: Matrices are tridiagonal and involve
only J or L unknowns with operations of O(JL) compared to
O(JBL3) (for the §-scheme).

Exercise for the remaining part of today’s lecture:
Show that the 2D ADI scheme is unconditionally stable.

The generalisation to 3D (with 2 intermediate variables) of the 2D
ADI is not unconditionally stable!
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