Numerical Methods for PDEs

Stability of the ADI method and an example of a 1D nonlinear problem (Lecture 12, Week 4)

Markus Schmuck

Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

Edinburgh, February 5, 2013

Outline

Stability of the ADI scheme

2 LTE and stability of a nonlinear problem

Von Neumann stability of the ADI method

Ansatz: Substitute $w_{j,l}^n := \xi^n e^{i\omega_x j} e^{i\omega_y l}$ and $v_{j,l} := \overline{v} \xi^n e^{i\omega_x j} e^{i\omega_y l}$ into the ADI scheme and apply the short hand notations

$$X = 2r_x \sin^2(\omega_x/2)$$
 $Y = 2r_y \sin^2(\omega_y/2)$.

This leads to

$$\begin{cases} \overline{v} = (1 - Y)/(1 + X), \\ \xi = \overline{v}(1 - X)/(1 + Y) = (1 - X)/(1 + X) \cdot (1 - Y)/(1 + Y), \end{cases}$$

where we used that (Exercise:)

$$\begin{split} \delta_{x}^{2} \left[e^{i\omega_{x}j} e^{i\omega_{y}I} \right] &= -4 \sin^{2} \left(\omega_{x}/2 \right) \left[e^{i\omega_{x}j} e^{i\omega_{y}I} \right] \\ \delta_{y}^{2} \left[e^{i\omega_{x}j} e^{i\omega_{y}I} \right] &= -4 \sin^{2} \left(\omega_{y}/2 \right) \left[e^{i\omega_{x}j} e^{i\omega_{y}I} \right] \end{split}$$

Hence, $|\xi| \leq 1$ for all harmonics ω_X , ω_V since

$$|(1-X)/(1+X)| \le 1$$
, and $|(1-Y)/(1+Y)| \le 1$ $\forall X, Y \ge 0$.

The LTE and stability of a nonlinear parabolic equation

We consider the nonlinear equation

$$u_t - u_{xx} + a(u)u = 0 \tag{*}$$

for $0 < a_1 < a(\cdot) < a_2$ and $a(\cdot)$ smooth.

Approximate the linear part by the BTCS method. Then, an immediate discretisation strategy for the nonlinear term is

$$\frac{w_j^n - w_j^{n-1}}{k} - \frac{w_{j-1}^n - 2w_j^n + w_{j+1}^n}{h^2} + a(w_j^{n-1})w_j^n = 0.$$
 (**)

The LTE and stability of a nonlinear parabolic equation

We consider the nonlinear equation

$$u_t - u_{xx} + a(u)u = 0 \tag{*}$$

for $0 < a_1 < a(\cdot) < a_2$ and $a(\cdot)$ smooth.

Approximate the linear part by the BTCS method. Then, an immediate discretisation strategy for the nonlinear term is

$$\frac{w_j^n - w_j^{n-1}}{k} - \frac{w_{j-1}^n - 2w_j^n + w_{j+1}^n}{h^2} + a(w_j^{n-1})w_j^n = 0.$$
 (**)

The LTE and stability of a nonlinear parabolic equation

We consider the nonlinear equation

$$u_t - u_{xx} + a(u)u = 0 \tag{*}$$

for $0 < a_1 < a(\cdot) < a_2$ and $a(\cdot)$ smooth.

Approximate the linear part by the BTCS method. Then, an immediate discretisation strategy for the nonlinear term is

$$\frac{w_j^n - w_j^{n-1}}{k} - \frac{w_{j-1}^n - 2w_j^n + w_{j+1}^n}{h^2} + a(w_j^{n-1})w_j^n = 0.$$
 (**)

Compute the LTE for (**):

Step 1: Substitute $w_i^n \rightarrow u(x_j, t_n)$.

Step 2: Apply a Taylor expansion at time t_n since most of the terms in (**) are at the time level n. For $u_i^n := u(x_i, t_n)$ we have

$$\frac{u_j^n-u_j^{n-1}}{k}=u_t+O(k),$$

and

$$\frac{u_{j-1}^n - 2u_j^n + u_{j+1}^n}{h^2} = u_{xx} + O(h^2).$$

The non-standard term $a(u_j^{n-1})u_j^n$ is expanded at u_j^n with $u^* = (1-\theta)u_i^{n-1} + \theta u_i^n$ for some $0 \le \theta \le 1$ by

$$a(u_{j}^{n-1}) = a(u_{j}^{n}) - a'((1-\theta)u_{j}^{n-1} + \theta u_{j}^{n})(u_{j}^{n} - u_{j}^{n-1})$$

$$= a(u_{j}^{n}) - a'(u^{*})k\left(\frac{u_{j}^{n} - u_{j}^{n-1}}{k}\right)$$

$$= a(u_{i}^{n}) - a'(u^{*})k(u_{t}(x_{j}, t_{n}) + O(k)).$$

Since $a(\cdot)$ is sufficiently smooth (i.e., $|a'(\cdot)| < C$), we get

$$a(u_i^{n-1}) = a(u_i^n) + O(k)$$

Compute the LTE for (**):

Step 1: Substitute $w_j^n \rightarrow u(x_j, t_n)$.

Step 2: Apply a Taylor expansion at time t_n since most of the terms in (**) are at the time level n. For $u_i^n := u(x_i, t_n)$ we have

$$\frac{u_j^n-u_j^{n-1}}{k}=u_t+O(k),$$

and

$$\frac{u_{j-1}^n-2u_j^n+u_{j+1}^n}{h^2}=u_{xx}+O(h^2).$$

The non-standard term $a(u_j^{n-1})u_j^n$ is expanded at u_j^n with $u^* = (1 - \theta)u_i^{n-1} + \theta u_i^n$ for some $0 \le \theta \le 1$ by

$$a(u_{j}^{n-1}) = a(u_{j}^{n}) - a'((1-\theta)u_{j}^{n-1} + \theta u_{j}^{n})(u_{j}^{n} - u_{j}^{n-1})$$

$$= a(u_{j}^{n}) - a'(u^{*})k\left(\frac{u_{j}^{n} - u_{j}^{n-1}}{k}\right)$$

$$= a(u_{i}^{n}) - a'(u^{*})k(u_{t}(x_{i}, t_{n}) + O(k)).$$

Since $a(\cdot)$ is sufficiently smooth (i.e., $|a'(\cdot)| < C$), we get

$$a(u_i^{n-1}) = a(u_i^n) + O(k).$$

Step 3: Collect all the results and use (*) in

$$\label{eq:loss_loss} \textit{LTE} = \text{LOT}\left[L_{k,h}u(x_j,t_n)\right],$$

i.e.,

LTE = LOT
$$\left[\frac{u_{j}^{n}-u_{j}^{n-1}}{k} - \frac{u_{j-1}^{n}-2u_{j}^{n}+u_{j+1}^{n}}{h^{2}} + a(u_{j}^{n-1})u_{j}^{n}\right]$$

= $\left[u_{t} + O(k) - u_{xx} + O(h^{2}) + (a(u) + O(k))u\right]_{x_{j},t_{n}}$
= $u_{t} - u_{xx} + a(u)u + O(k) + O(h^{2}) + O(k)$
= $O(k) + O(h^{2})$.

Compute the von Neumann stability for (**):

Step 1: Substitute $w_i^n = \xi^n e^{i\omega j}$ in (**) and multiply by k, that is,

$$\xi^{n}e^{i\omega j} - \xi^{n-1}e^{i\omega j} + r(-\xi^{n}e^{i\omega(j-1)} + 2\xi^{n}e^{i\omega j} - \xi^{n}e^{i\omega(j-1)}) + k a(\xi^{n-1}e^{i\omega j})\xi^{n}e^{i\omega j} = 0$$

Step 3: Collect all the results and use (*) in

$$LTE = \text{LOT}\left[L_{k,h}u(x_j,t_n)\right],$$

i.e.,

LTE = LOT
$$\left[\frac{u_j^n - u_j^{n-1}}{k} - \frac{u_{j-1}^n - 2u_j^n + u_{j+1}^n}{h^2} + a(u_j^{n-1})u_j^n\right]$$

= $\left[u_t + O(k) - u_{xx} + O(h^2) + (a(u) + O(k))u\right]_{x_j,t_n}$
= $u_t - u_{xx} + a(u)u + O(k) + O(h^2) + O(k)$
= $O(k) + O(h^2)$.

Compute the von Neumann stability for (**):

Step 1: Substitute $w_j^n = \xi^n e^{i\omega j}$ in (**) and multiply by k, that is,

$$\xi^{n}e^{i\omega j} - \xi^{n-1}e^{i\omega j} + r(-\xi^{n}e^{i\omega(j-1)} + 2\xi^{n}e^{i\omega j} - \xi^{n}e^{i\omega(j-1)}) + k a(\xi^{n-1}e^{i\omega j})\xi^{n}e^{i\omega j} = 0.$$

Then, divide by $\xi^{n-1}e^{i\omega j}$ and set $a(*)=a(\xi^{n-1}e^{i\omega j})$ to get

$$\xi - 1 + r(-\xi e^{-i\omega} + 2\xi - \xi e^{i\omega}) + k a(*)\xi = 0.$$

Using $e^{i\omega}+e^{-i\omega}-2=-4\sin^2(\omega/2)$ leads to

$$\xi(1 + r4\sin^2(\omega/2) + k a(*)) = 1,$$

and after rewriting

$$\xi = \frac{1}{(1 + r4\sin^2(\omega/2) + k a(*))}.$$

Since $0 < a_1 < a(*)$ the scheme is always stable.

