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Introduction

What kind of processes are described by Hyperbolic PDEs?

Wave propagation phenomena such as

waves in water, gas, plasmas, traffic flow, etc.

If there is no dissipation (loss of energy), then the wave keeps its form
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The previous figure showed a wave

(1) moving from left to right with a certain speed

(2) with constant wave form

The simplest hyperbolic equation capturing (1) and (2) is the first
order advection equation

(AE)

{
∂u
∂t + a∂u

∂x = 0, a = const. ,
u(x ,0) = F (x) initial condition .

Equation (AE) is a useful test for numerical schemes approximating
hyperbolic PDEs.

Remark: u(x , t) = F (x − at) is an exact solution of (AE),
since ∂u

∂t = (−a)F ′(x − at) and ∂u
∂x = F ′(x − at).
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Propagation with constant speed

Meaning of the analytical solution: Initial wave form defined by F
moves with constant speed a to the right if a > 0 and to the left if a < 0.
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The solution is constant along each characteristic line with slope

dx/dt = a.
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Other examples of Hyperbolic PDEs

advection equation with variable coefficient
∂u
∂t

+ a(x)
∂u
∂x

= 0

The wave equation
∂2u
∂t2 =

∂2u
∂x2

higher dimensions
∂u
∂t

+ ax
∂u
∂x

+ ay
∂u
∂y

= 0

nonlinear equations, for example Burger’s equation

∂u
∂t

+
1
2
∂(u2)

∂x
= 0
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Boundary conditions for (AE)

Consider the equation (AE) on the interval (0,1), then only one
boundary condition is required, i.e.,

if
{

a > 0
a < 0

}
we specify

{
u(0, t) = g(t)
u(1, t) = g(t)

Example: Let a > 0 and

{
u(x ,0) = F (x) initial condition ,

u(0, t) = g(t) left-hand boundary condition ,

leads to the exact solution

u(x , t) =

{
g(t − x/a) x ≤ at ,
F (x − at) x > at .
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F contains the information from the initial condition
g represents the new information induced by the left-hand BC
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Simple discretisations of the advection equation

We use the usual uniform grid in x and t , i.e. fixed values of h and k .
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with xj = x0 + jh, tn = nk , and the approximate solution u(xj , tn) ≈ wn
j .
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Simple explicit scheme

Advection Equation (AE):

ut + aux = 0

Forward difference approximation in time:

ut ≈
Ft

k
wn

j =
wn+1

j − wn
j

k

Different approximations in space:

ux |(xj ,tn) ≈


(wn

j − wn
j−1)/h, backwards diff.

(wn
j+1 − wn

j−1)/2h, central diff.
(wn

j+1 − wn
j )/h, forwards diff.
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FTBS and FTFS schemes

With the backward difference operator Bx we get the FTBS scheme

wn+1
j − wn

j

k
+ a

wn
j − wn

j−1

h
= 0

or
wn+1

j = (1 − p)wn
j + pwn

j−1

where

p =
ak
h

= CFL number (Courant-Friedrichs-Lewy, 1928)

Alternatively, with the forward difference operator Fx we get the FTFS
scheme

wn+1
j = (1 + p)wn

j − pwn
j+1 .
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FTBS scheme: Info “travels”
to the right (like PDE with
a > 0).

FTFS scheme: Info “travels”
to left (like PDE with a < 0).

Interpretation: Applicability of the schemes depends on sign(a).

We will check this with the LTE and the stability of the schemes.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 13 13/ 13


	Examples
	Simple numerical schemes for the advection equation

