Numerical Methods for PDEs

Hyperbolic PDEs: LTE and Stability of FTBS and FTFS scheme; the FTCS scheme

(Lecture 14, Week 5)

Markus Schmuck

Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

Edinburgh, February 11, 2015

1 LTE and stability of the FTBS scheme

2 LTE and stability of the FTFS scheme

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 14

LTE of the FTBS scheme

For the FTBS scheme we have

$$L_{h,k}w_{j}^{n}=rac{w_{j}^{n+1}-w_{j}^{n}}{k}+arac{w_{j}^{n}-w_{j-1}^{n}}{h},$$

and the LTE is computed by

so the FTBS scheme is in general **1st order accurate in time and space**.

The FTBS scheme is exact for p = 1:

Note:
$$u_t + au_x = 0 \Rightarrow u_{tt} = -au_{xt} = -a(u_t)_x = a^2 u_{xx}$$

so $\frac{1}{2}k u_{tt} - \frac{1}{2}ah u_{xx} = \frac{1}{2}a[ak - h]u_{xx}$
 $= 0 \quad \text{iff } p = 1 \quad (p = ak/h).$

Exercise: Show that also all the higher order terms vanish for p = 1.

Stability of the FTBS scheme

Step 1: Insert $w_i^n = \xi^n e^{i\omega j}$ into

$$w_j^{n+1} = (1 - p)w_j^n + pw_{j-1}^n$$

Step 2: Cancel the terms $\xi^n e^{i\omega j}$, i.e.,

 $\xi = (1 - p) + p e^{-i\omega}$

Using $e^{-i\omega} = \cos \omega - i \sin \omega$ gives

$$\xi = (1 - p + p \cos \omega) + p(-i \sin \omega)$$

so $|\xi|^2 = (1 - p + p \cos \omega)^2 + p^2 \sin^2 \omega$
 $= (1 - p)^2 + 2(1 - p)p \cos \omega + p^2 \cos^2 \omega + p^2 \sin^2 \omega$
 $= 1 - 2p(1 - p)(1 - \cos \omega)$
 $= 1 - 4p(1 - p) \sin^2(\omega/2)$

Step 3: Stability requires $|\xi| \leq 1$.

- If *a* > 0, we get

 $4p(1-p)\sin^2(\omega/2) \ge p(1-p) \ge 0$ (*)

since p := ak/h. (*) is satisfied for $p \in [0, 1]$ and hence for $k \le h/a$.

- If a < 0, then the FTBS scheme is unstable for all k.

6/9

The same steps we can repeat with the FTFS scheme:

Exercise 1: Show that the FTFS scheme is also 1st order accurate, unless p = -1 ($h = -ak \Rightarrow a < 0$), in which case it is exact, i.e. LTE = 0.

Exercise 2: Show that the FTFS scheme is stable $\Leftrightarrow p \in [-1, 0]$, i.e. it is stable when a < 0 and $k \le h/|a|$, and it is unstable if a > 0.

FTBS and FTFS scheme: Stability requirements

Visual interpretation of the stability requirement:

The characteristic line of the exact solution passing through (x_j, t_n) must lie within the "computational molecule"

The FTCS scheme

Expectations of using a central difference for u_x :

- higher order accuracy
- not capturing the "prefered direction" of hyperbolic problems

Resulting FTCS scheme:

$$w_j^{n+1} = w_j^n - \frac{1}{2}p(w_{j+1}^n - w_{j-1}^n).$$

Stability analysis:

$$\xi = 1 - \frac{1}{2}p(e^{i\omega} - e^{-i\omega}) = 1 - ip\sin(\omega),$$

and therefore

$$arsigma |^2 = 1 + p^2 \sin^2(\omega)$$

> 1 for all $\omega \neq 0, \pm \pi$ for any $p \neq 0$,

Result: The FTCS scheme is *completely unstable* independent of *a* and *p*

