Numerical Methods for PDEs

Hyperbolic PDEs: The leapfrog scheme (LTE, stability & phase error)
and the Lax-Wendroff scheme (LTE, stability & phase error)
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0 Stability of the leapfrog scheme
Q The phase shift of the leapfrog scheme
© The Lax-Wendroff scheme

° LTE, stability, and phase shift of the Lax-Wendroff scheme
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Stability of the leapfrog scheme

Leapfrog scheme: (or CTCS method)

n+1 _ . n—1 n . _ N
Wi W M Wi
2k 2h
n+1 _ ,,n—1 n n
= w T =w —p(wiy —wy) (%)

Step 1: Insert the ansatz w/” = ¢"e™/ into (x), that is,

52 S p< (e/w - e—iw)
or &2+ 2ip¢sinw—1=0.

Fora=1, b=2jpsinw and ¢ = —1, we obtain the roots

b+ VP2 —
§x = b+ 2ba 4ac:—ipsinwi\/1—p23in2w.
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Step 2: Stability requires |£1.| < 1. The discriminant 1 — p? sinw
induces two cases:

e Case |p| > 1: Worst case for sinw = 1, hence

s = o iy/pE—1 =i |p /o~ 1]

with |£_| > 1. Hence, the scheme is unstable.

e Case |p| < 1: The discriminant is real for all w and therefore
éx? = (—psinw)® + (1 — pPsinw) =1 Vu,

and hence () is stable for all |p| < 1 (independent of a > 0 or a < 0).
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Phase shift of the leapfrog method

£+ = —ipsinw +4/1 —p2sinw

- (-pPsinfe)®
T 0 :

+

&
Phase shift of ¢, : Phase shift of ¢_:
& ¢y =—sin"'(psinw) ¢ =m+sin~"(psinw)
:—Sin_1(pw—pw3/3!+...) :pw+7r—%pw3(1—p2)+...

= —pw(1—$(1 — PP+ ..)

(using sin~"(x) = x+x3/64+...) | = Phase shift changes sign, since

w =¢"e™| hence g_n=nr+...
= Phase error of same sign Vn > 0 | = Oscillations (require “filtering”)

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 16

HERIOT

5/ 14



Initial condition: Gaussian pulse

1.2 T T T T T T T T T

Observation: “Only” small amplitude oscillations to the left
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Leapfrog scheme: Test example 2

Initial condition: Step function
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Observation: Step front better approximated than in the upwind case
(i.e., FTBS for a > 0 and FTFS for a < 0) but strong oscillations

Recall: LTE = Cuy + O(k*, h*) is dispersive and not diffusive uyy
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The Lax-Wendroff scheme

Starting point: Leapfrog method shows strong oscillations/dispersion

Goal: Remove oscillations

Idea: Add a diffusive term by a Taylor expansion up to 2nd order, i.e.,
for u smooth solving (AE) use (2)" u= (~a2)" u, and

’
u(x,t+k) = u+ kus + ékzun + O(k®)

Y

(xt)

= U — aKkuy + 132k2Uxx + O(k®)

2 (XJ)?
Dy 1 5, 502
~U—akK— —ak =%
u—akg U+ sak U,

where we truncated the expansion (last line) and replaced derivatives
by their central difference approximations.
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Now, use the result from previous slide, that is,

u(x, t+ k)~ u-— akD—u+1a2k2§u
’ 2h 2 h2

as our numerical scheme. That means,

n+1 __ n_B
Wf _W/ 2(

FTCS scheme extra term

2
p
Wiy —wlq)+ 2(/+1 2w/ + w )

which gives after rearranging the following Lax-Wendroff scheme

n

1 1
Wt = (1= PP )W) — 5p(1 = )Wy + (1 +p)w] s (LW)
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LTE of the Lax-Wendroff method
The Lax-Wendroff scheme (LW):

W{H—1 —wn
Law] = ’fj + a%w — —azk

Computing the LTE:

u(x;, t —u(x;, D
LTE = Lau(x;, ty) = < ”“)k < ”)+a2; u(x;, tn)

1 5, 62
—= 2kﬁu(x,-, th)

1 1
= ék[Un — a Uxx] +ék2Um + ghZUxxx I O(ks, h4, khz)

6
=0
a
= (1 —pz)éh"‘uxxx + O(h%).

Hence the method is 2nd order accurate.
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Stability of the Lax-Wendroff scheme

After inserting w = £"e/“I into (LW) and simplifying, we get

§=(1-p°) - %pﬁ —p)e" + %pﬁ +p)e ™
=1+ p?(cosw — 1) —ipsinw
=1 —2p?sin?(w/2) — jpsinw
=1 —2p?sin®(w/2) — 2ipsin(w/2) cos(w/2).

Hence,

2
€2 = {1 — 2p232} + 4p?s?c?, where s = sin(w/2), ¢ = cos(w/2)
=144p2s%(c® — 1) + 4p*s*
=1—4p*(1 - p?)s*
= |2 <1forall|p| <1and | > 1forall |p| > 1
= Scheme is stable for all [p| < 1
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Phase shift in the Lax-Wendroff method

We have
6= —tan~! | psinw
|1 —2p2sin®(w/2)
= —tan™' p(w—16w3+...)(1 +p2w2/2+...)]
= —tan™" -pw(1 +w2(1p2 = 1) +...)
i 2 6

:pw<1:3w2(1p2)+...>.

Observations:
e The same shift as for the first root of the Leapfrog scheme

e Second troublesome root of the Leapfrog scheme disappeared
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Lax-Wendroff scheme: Test example 1

Initial condition: Gaussian pulse
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u(x,t)
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Observation: The Gaussian is well-preserved by the scheme.
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Lax-Wendroff scheme: Test example 2

Initial condition: Step function
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Observations: e Less smeared out than the upwind schemes (i.e.,
FTFS for a < 0 & FTBS for a > 0), fewer oscillations than the leapfrog
scheme (most are damped).

e The Lax-Wendroff is a well-used method.

¢ All the methods we have seen so far are explicit.
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