Numerical Methods for PDEs

Hyperbolic PDEs: Backward time schemes/The Crank-Nicolson scheme (LTE, stability & phase error)/Wave equation (LTE, stability & phase error)

(Lecture 17, Week 6)

Markus Schmuck

Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

Edinburgh, February 18, 2015

Outline

Backward time schemes

The Crank-Nicolson scheme (LTE, stability & phase error)

Wave equation (LTE, stability & phase error)

Backward time schemes: The BTCS scheme

The BTCS scheme is

$$\frac{w_j^{n+1}-w_j^n}{k}+a\frac{w_{j-1}^{n+1}-w_{j+1}^{n+1}}{2h}=0$$

or

$$w_j^{n+1} + \frac{1}{2}p(w_{j+1}^{n+1} - w_{j-1}^{n+1}) = w_j^n$$

Exercise: Show that the BTCS scheme is first order in the LTE and that it is stable for all p.

The Crank-Nicolson (CN) scheme for (AE)

The PDE (**AE**) is $u_t = -au_x$. Approximate the spatial part by an average across time levels n and n+1, i.e.,

$$\frac{w_j^{n+1} - w_j^n}{k} \approx -\frac{a}{2} \left(u_x |_{t=t_n} + u_x |_{t=t_{n+1}} \right)$$
$$= -\frac{a}{2} \left(\frac{D_x}{2h} w_j^n + \frac{D_x}{2h} w_j^{n+1} \right),$$

using central differences in space to approximate u_x . If we rearrange all this we get the CN scheme for the advection equation.

$$w_{j}^{n+1} + \frac{\rho}{4} \left(w_{j+1}^{n+1} - w_{j-1}^{n+1} \right) = w_{j}^{n} - \frac{\rho}{4} \left(w_{j+1}^{n} - w_{j-1}^{n} \right)$$

As in the parabolic case, we need to solve a tridiagonal system of equations to get the solution at each timestep.

LTE, stability, and phase error of the CN method

LTE: Standard calculations (Exercise) show that

LTE =
$$\underbrace{u_t + au_x}_{=0} + \underbrace{\frac{k}{2}(u_{tt} + au_{xt})}_{=0} + \frac{k^2}{6}u_{ttt} + \frac{ah^2}{6}u_{xxx} + \frac{ak^2}{4}u_{xtt} + \text{ h.o.t.}$$

= $\frac{ah^2}{6}u_{xxx}(1 + \frac{1}{2}p^2) + O(h^3)$

Stability: Insert $w_j^n = \xi^n e^{i\omega j}$ into the CN method

$$\xi \left[1 + \frac{p}{4} (e^{i\omega} - e^{-i\omega}) \right] = 1 - \frac{p}{4} (e^{i\omega} - e^{-i\omega})$$

$$\Rightarrow \quad \xi = \frac{1 - \frac{1}{2} i p \sin \omega}{1 + \frac{1}{2} i p \sin \omega}$$

$$\Rightarrow \quad |\xi|^2 = \frac{|1 - \frac{1}{2} i p \sin \omega|^2}{|1 + \frac{1}{3} i p \sin \omega|^2} = \frac{1 + \frac{1}{4} p^2 \sin^2 \omega}{1 + \frac{1}{4} p^2 \sin^2 \omega} = 1 \quad \forall p, \omega$$

 \Rightarrow The CN scheme is stable for all p.

Phase error: We have

$$\phi = -\tan^{-1}\left[\frac{p\sin\omega}{1 - \frac{p^2}{4}\sin^2(\omega)}\right]$$

$$= -\tan^{-1}\left[p\omega(1 + \omega^2\left(\frac{p^2}{4} - \frac{1}{6}\right) + \dots)\right]$$

$$= -p\omega\left(1 - \frac{1}{6}\omega^2(1 + \frac{1}{2}p^2) + \dots\right).$$

$$\sin x = x - \frac{x^3}{2}\left(\frac{3}{4} + \dots + \frac{x^3}{2}\right) + \dots$$

- (Hint: $\sin x = x x^3/3! + \dots$, $\tan^{-1} x = x x^3/3 + \dots$)
- \Rightarrow The phase errors will grow when |p| > 1
- ⇒ The unconditional stability is paid with an increasing phase error

Crank-Nicolson scheme: Test example 1

Initial condition: Gaussian pulse

Observation: Gaussian not well resolved plus some oscillations.

Crank-Nicolson scheme: Test example 2

Initial condition: Step function

Observation: Strong oscillations (due to missing artificial viscosity)

Summary of results: The different schemes for **(AE)**

Scheme	LTE	stable	$p=\pm 1$	Comments
Upwind	1st	<i>p</i> ≤ 1	exact	Need FTBS for $a > 0$,
				FTFS for $a < 0$. Solu-
				tions smear out too much.
Leapfrog	2nd	<i>p</i> ≤ 1	exact	Multi-level / Bad oscil-
				lations.
Lax-Wendroff	2nd	<i>p</i> ≤ 1	exact	Best solution
CN	2nd	∀ <i>p</i>	Not exact	Implicit. Bad oscillations.

Second order equations: The wave equation

The wave equation

$$\begin{cases} u_{tt} = a^2 \Delta u \\ u(x,0) = h(x) & \text{1st IC}, \\ u_t(x,0) = H(x) & \text{2nd IC}. \end{cases}$$

is a prototype for 2nd order equations.

Physical meaning:

- Describes transmission of waves in different media, e.g. sound waves in air or water.
- The parameter a is the speed of the wave

Exact solution: D'Alembert solution

$$u(x,t) = F(x-at) + G(x+at)$$

Simplest numerical approximation: The CTCS scheme

Using a CTCS method leads to the 3-level scheme

$$\frac{w_j^{n+1} - 2w_j^n + w_j^{n-1}}{k^2} = \frac{w_{j-1}^n - 2w_j^n + w_{j+1}^n}{h^2}$$

$$\Rightarrow w_j^{n+1} = 2w_j^n - w_j^{n-1} + p^2(w_{j-1}^n - 2w_j^n + w_{j+1}^n), \quad p = ak/h \quad (*)$$

Fictitious point in time: For computing n = 1, we introduce an extra grid point at t = -k. Suppose we have at t = 0 (n = 0), i.e.,

$$u(x,0) = f(x)$$
 \Rightarrow $w_j^0 = f_i$
 $u_t(x,0) = g(x)$ \Rightarrow $\frac{w_j^1 - w_j^{-1}}{2k} = g_i$

using central differences for the time derivative.

Now, write the CTCS scheme for n = 0 and eliminate the fictitious point n = -1 with previous equations, i.e.,

$$w_{j}^{1} = 2w_{j}^{0} - w_{j}^{-1} + p^{2}(w_{j-1}^{0} - 2w_{j}^{0} + w_{j+1}^{0})$$

$$\Rightarrow w_{j}^{1} = 2f_{j} - w_{j}^{-1} + p^{2}(f_{j-1} - 2f_{j} + f_{j+1})$$

$$\Rightarrow w_{j}^{1} = 2f_{j} - w_{j}^{1} + 2kg_{i} + p^{2}(f_{j-1} - 2f_{j} + f_{j+1})$$

$$\Rightarrow w_{j}^{1} = f_{j} + kg_{i} + \frac{1}{2}p^{2}(f_{j-1} - 2f_{j} + f_{j+1}), \quad j = 1, 2, ..., J.$$

Exercise: Show that the LTE of the above CTCS scheme is

LTE =
$$\frac{1}{12}(k^2 u_{tttt} - a^2 h^2 u_{xxxx}) + O(k^4, h^4)$$

= $\frac{a^2}{12}(p^2 - 1)h^2 u_{xxxx} + O(h^4)$,

i.e. it is 2nd order accurate.

Stability of the CTCS scheme (*)

Step 1: Insert the ansatz $w_i^n = \xi^n e^{i\omega j}$ into (*), i.e.,

$$\xi^{2} = 2\xi - 1 + p^{2}\xi \underbrace{\left(e^{i\omega} - 2 + e^{-i\omega}\right)}_{=-4\sin^{2}(\omega/2)}$$
$$= 2\xi[1 - 2p^{2}\sin^{2}(\omega/2)] - 1,$$

hence $\xi^2 - 2[1 - 2p^2 \sin^2(\omega/2)] + 1 = 0$.

Step 2: The roots of the quadratic equation are

$$\begin{split} \xi_{\pm} &= 1 - 2p^2 \sin^2(\omega/2) \pm \sqrt{(1 - 2p^2 \sin^2(\omega/2))^2 - 1} \\ &= 1 - 2p^2 \sin^2(\omega/2) \pm \sqrt{4p^2 \sin^2(\omega/2)[p^2 \sin^2(\omega/2) - 1]}. \end{split}$$

Step 3: Discuss the discriminant $\sqrt{4p^2\sin^2(\omega/2)[p^2\sin^2(\omega/2)-1]}$:

• Case $p^2 < 1$: It holds that $4p^2 \sin^2(\omega/2) \ge 0$ and $[p^2 \sin^2(\omega/2) - 1] \le 0$ and therefore we get two complex roots

$$\xi_{\pm} = 1 - 2p^{2} \sin^{2}(\omega/2) \pm i2p \sin(\omega/2) \sqrt{1 - p^{2} \sin^{2}(\omega/2)}$$

$$\Rightarrow |\xi_{\pm}|^{2} = [1 - 2p^{2} \sin^{2}(\omega/2)]^{2} + 4p^{2} \sin^{2}(\omega/2)[1 - p^{2} \sin^{2}(\omega/2)]$$

$$= 1 \quad \forall \omega.$$

- Case $p^2 = 1$: Gives $|\xi_{\pm}| = 1$
 - \Rightarrow Hence, the CTCS scheme (*) is stable for $p^2 \le 1$.
- Case $p^2 > 1$: Consider the best scenario, i.e., $\omega = \pi$,

$$\xi_{\pm} = 1 - 2p^{2} \pm 2p\sqrt{p^{2} - 1}$$
So $\xi_{-} < 1 - 2p^{2} < -1 \text{ for } p^{2} > 1$

$$\Rightarrow |\xi_{-}| > 1 \text{ at } \omega = \pi,$$

⇒ Conclusion: The CTCS scheme (*) is von Neumann stable for

$$p^2 \le 1$$
.

Exercise: Show that the phase error of the CTCS scheme (*) is

$$\phi_{\pm} = \pm \rho \omega \left(1 - \frac{\omega^2}{24} (1 - \rho^2) + \dots \right).$$

This time we expect two solutions since the equation has waves travelling in both directions.

The CTCS method: Test example 1

Initial condition(s): Gaussian pulse in the center

Observations: • Initial pulse splits into two smaller pulses travelling into opposite directions.

 Good agreement between dashed-dotted line (exact solution) and dashed line (numerical appr.).

The CTCS method: Test example 2

Initial condition(s): Square pulse in the center

Observations: • Strong oscillations (as in the leapfrog scheme for (AE) [there is no damping (artificial viscosity)]