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0 Backward time schemes
@ The Crank-Nicolson scheme (LTE, stability & phase error)

0 Wave equation (LTE, stability & phase error)
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Backward time schemes: The BTCS scheme

The BTCS scheme is

Wn+1 —wh Wn+1 o W_n+1
J I 1 a J—1 1 _
k 2h

or

n+1 1 n+1 _ n+1y _ 0
Wi gp(VVj+1 W) =W,

Exercise: Show that the BTCS scheme is first order in the LTE and
that it is stable for all p.
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The Crank-Nicolson (CN) scheme for (AE)

The PDE (AE) is u; = —auy. Approximate the spatial part by an
average across time levels nand n+ 1, i.e.,

n+1 n
Wi Wi

a

k T2 (UX lt=tn + UX’t=fn+1>
_a(Dx n Dx ni4
2 <2th+2th ’

using central differences in space to approximate uy. If we rearrange
all this we get the CN scheme for the advection equation.

n+1 B n+1 _ on+1) n_B n o _ N
i +4(Wj+1 W/—‘)_W/ 4(W/+1 W/_1)

As in the parabolic case, we need to solve a tridiagonal system of
equations to get the solution at each timestep.
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LTE, stability, and phase error of the CN method

LTE: Standard calculations (Exercise) show that

k k2 ah? ak?
LTE = u; + auy + E(Uﬁ + auxt) +€Um + TUXXX -+ Tuxn + h.o.t.
-0 T
ah?

’
= ?Uxxx(‘l + §p2) + O(h3)
Stability: Insert w/” = ¢"e’/ into the CN method

¢ 1+i(eiw_e—iw) :1_§(eiw_e—iw)
1 - Jipsinw
1+ 3ipsinw
1— lipsinw|2 1+ 1p?sin?
= |§|2_‘ glpsinw” _ 1+ 4P Y Vp, w

1+ Jipsinw2 1+ 1p2sinfw
= The CN scheme is stable for all p.
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Phase error: We have

=

=
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¢:tan‘1! psinw ]
)

1— %2 sin(w

2
— _tan-" 2 (P 1

= —tan [pw(1+w <4 6)+)]
— pw(1-tra 1y 4

= —pw 5v 5P I

(Hint: sin x = x —x3/3! +...,tan" " x =x —x3/3 +...)

The phase errors will grow when |p| > 1

The unconditional stability is paid with an increasing phase error
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Crank-Nicolson scheme: Test example 1

Initial condition: Gaussian pulse

12

1k
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u(x,t)

0.4r-

Observation: Gaussian not well resolved plus some oscillations.
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Crank-Nicolson scheme: Test example 2

Initial condition: Step function
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u(x,t)
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Observation: Strong oscillations (due to missing artificial viscosity)
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Summary of results: The different schemes for (AE)

Scheme LTE | stable | p = +1 Comments

Upwind 1st | |p| <1 | exact Need FTBS for a > 0,
FTFS for a < 0. Solu-
tions smear out too much.

Leapfrog 2nd | |p| <1 | exact Multi-level / Bad oscil-
lations.

Lax-Wendroff | 2nd | |p| < 1 | exact Best solution

CN 2nd | Vp Not exact | Implicit. Bad oscillations.
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Second order equations: The wave equation

The wave equation

uy = @2Au
u(x,0) = h(x) 1stlIC,
ui(x,0) = H(x) 2ndIC.

is a prototype for 2nd order equations.

Physical meaning:

e Describes transmission of waves in different media, e.g. sound
waves in air or water.

e The parameter ais the speed of the wave

Exact solution: D’Alembert solution

u(x,t) = F(x — at) + G(x + at)
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Simplest numerical approximation: The CTCS scheme

Using a CTCS method leads to the 3-level scheme

1 _opwn 4w no_ w4 wh
o EGP =AY

k2 h?

= w = 2w — w4 (W —2w] + W), p=ak/h (%)

Fictitious point in time: For computing n = 1, we introduce an extra
grid point at t = —k. Suppose we have att =0 (n = 0), i.e.,

u(x,0) =f(x) = wp = f
u(x,0) =g(x) = L1 =g,

using central differences for the time derivative.
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Now, write the CTCS scheme for n = 0 and eliminate the fictitious
point n = —1 with previous equations, i.e.,
W :2W-0—W-_1 + P (W — 2w + wy)

= w =2f—w "+ PP(fiig — 26+ fi34)

= ! = 2w 42k + PP (f1 ~ 26+ )

1 .
= W =fi+kgi+ 5P (f =26+ fin0), j=1,2,....J.

Exercise: Show that the LTE of the above CTCS scheme is

LTE — 112(k Urtr — P ) + O(K*, )
G .
12(,0 — 1) PP Uy + O(H*),

i.e. it is 2nd order accurate.
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Stability of the CTCS scheme (x)
Step 1: Insert the ansatz w/” = ¢"e™/ into (+), i.e.,

2 =26—1+p% (" -2+ 67

=—4sin?(w/2)
= 2¢[1 — 2p?sin?(w/2)] — 1,

hence ¢2 — 2[1 — 2p?sin®(w/2)] +1 = 0.

Step 2: The roots of the quadratic equation are

£ =1 — 20Psin?(w/2) + /(1 — 2p2 sin?(w/2))? — 1

— 1 — 207 sin?(w/2) + \/4p2 sin?(w/2) [P sin(w/2) — 1].

HERIOT
AR
M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 17 13/17



Step 3: Discuss the discriminant \/4p2 sin?(w/2)[p? sin?(w/2) — 1]:
e Case p? < 1: It holds that 4p? sin?(w/2) > 0 and
[0? sin?(w/2) — 1] < 0 and therefore we get two complex roots

£x =1-2p%sin?(w/2) + i2psin(w/2)\/1 — p2sin?(w/2)
= &) =1 —2p®sin®(w/2)]? + 4p® sin?(w/2)[1 — p? sin®(w/2)]
=1 Vw.
e Case p? =1:Gives |£| =1
= Hence, the CTCS scheme (x) is stable for p? < 1.
e Case p? > 1: Consider the best scenario, i.e., w = 7,

£ =1-2p° £2p\/p? —1

So & <1-2p°<—1forp?®>1
= | |>1atw=m,

= Conclusion: The CTCS scheme (x) is von Neumann stable for
p? <1.
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Exercise: Show that the phase error of the CTCS scheme (x) is

.

¢>i_ipw< 24(1—p2)+...>.

This time we expect two solutions since the equation has waves
travelling in both directions.
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The CTCS method: Test example 1

Initial condition(s): Gaussian pulse in the center
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Observations: e Initial pulse splits into two smaller pulses travelling
into opposite directions.

e Good agreement between dashed-dotted line (exact solution) and
dashed line (numerical appr.).
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The CTCS method: Test example 2

Initial condition(s): Square pulse in the center
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Observations: ¢ Strong oscillations (as in the leapfrog scheme for
(AE) [there is no damping (artificial viscosity)]
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