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Poisson equation: Classical solution and examples
Let QA c IRY be open and bounded with boundary 99 (i.e., @ = Q U 9Q)
and A = {a;},_; ., @ symmetric, positive definite matrix.

Classical solutions: A function u € C?(Q) that solves

5 { ~div (AVu) =1 inQ
u(x) = g(x) on o0

is called classical solution of the Poisson Equation (PE).

Applications:
e Stationary distribution of heat

e Stationary fluid flow in homogeneous & porous media

e Stationary electric potential
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Poisson equation: Central difference approximation

For a uniform mesh with h = hy :=1/J = h, := 1/K, denote the nodal
interpolation by f; x = f(x;, yx) and the numerical approximation by
Wk =~ u(x;, yx) forj=0,1,2,...,Jand k=0,1,2,... K.

y
0Q u=g
1
k+1
u +u =f
XX yy
0Q Q file) K @ ®
u=g u=g
k-1
0o 20 u=g 1 -1 j j+1
Central difference approximation in 2D:
2
(CDA) Witk + Witt k + Wik—1 + Wikt —4Wik = Mk
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(CDA) as a coupled system: For J = K = 3 we get

Y3

Y2

Yo

1 1

Wo,1 + W1+ Wi+ Wip— 4w g = gfiq || Wa1+ W2 — 4wy = gfii—go1— gio

Wo2 + Wao + Wi+ Wiz —4Wio = gfio || Woo + Wi —4Wi2 = gfio—Go2 — 013
i

Wit + Waq+ Wao+ Wop —4Wo 1 = ghat || Wi+ Woo —4Wo 1 = gh1— 031 — Q20
1 1

Wi+ Wso+ Wot + Wog —4Woo = gho || Wipo+ Wot —4Woo = gho— 032 — 023
3 3

where we took the boundary condition g into account in the system on
the right-hand side.
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Matrix form of (CDA): These coupled equations can be written as

Sw=>b
where
Wi 1
Wi 2
W = W1 K1
W2 4
Wy—1,K—1
and
;
—4 1 1 0 sfi1—0901— 010
_ 1 -4 0 1 _ shi2—0o2— 013
S= 1 o0 -4 1 |randb= Sha — Gs1 — Qe
0 1 1 -4 %fz,z — 032 — 023
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Numerical example:

Take f(x,y) =1and g(x,0) = sinmx,g(x,1) = g(0,y) =g(1,y) = 0.
In this case the rhs vector is

©|—= ©|—=
SIS

b =

©|—=©|—

since sin(r/3) = v/3/2. Solving this system by Gaussian elimination
we get

Wi,1 1t :ﬁé 0.26920
T W12 _ —18 T J6 . 0.26920
el — g 0.05270
W22 _1 4 V3 0.05270
18 16

Note the symmetry wy 1 = wq o, Wo 1 = W2, Which we would expect
since the BCs are symmetric about the line x = 1/2.
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Problem: For small mesh parameters h = Ax = Ay, the matrix S will
be sparse and large.

Solution: Apply iterative methods such as Gauss-Seidel or SOR.
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Poisson equation: Local truncation error

For

Witk = 2Wik + Wir1k | Wik—1 = 2Wjk + W)kt
2 * [ !
the numerical solution satisfies Laow; x — fj x = 0. Then, the LTE reads

Lawjk =

u(xj — h, yi) — 2u(x;, yie) + u(x; + h. k)

LTE = Lau(Xj, Yk) — fik = 72 =
u(x;, Yk — h) —2u(x;, yk) + u(x;, yx + h)
+ 5 — ik
h
Ut + = FPlbgene + Uyy + ~=FPliyyyy — Fo + O(h")
w115 XXXX T 1o yyyy — ik
(X,x)
Using uxx + uyy = f finally leads to
1

Hence the scheme is consistent with order m = 2 for u € C™+2(Q) HERIOT
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Poisson equation: Convergence

Define the error as z; x = u(Xj, yx) — W -

Convergence: We say that the numerical scheme is convergent if and
only if|zix| — 0 as h— 0 forall j, k.

Lemma: (Convergence) The numerical solution w; x of the Central
Difference Approximation (CDA) converges to the classical solution
u € C*(Q) of the Poisson Equation (PE).

Before we prove this Lemma, we establish the

Lemma: (Discrete Maximum Prinicple (DMP)) If Lam; x > 0O for all

(/, k) and any function m; x, then m; x attains its maximum value
M = m;. - on the boundary, i.e., at (X;-, yx+) € 0.
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Proof: Discrete Maximum Principle (DMP)

Let M = max; k—o,... y[mM; k], and assume this is attained at an interior
point, say (j*, k*). This implies that

My _q jx + Mg g+ My jor g + Mjx g1 —4M >0

. 1
i.e. M < Z(mj*fhk* + M1 e+ My gx 1+ M g 41)

1
< —(4M) = M.
< LM =m

Equality is only possible if all interior points and their neighbours take
the value M, so the maximum value must be attained somewhere on
the boundary. (We have assumed here that M > 0 which is sufficient
for our needs).

|

HERI?%
M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 19 11/ 14 ol



Proof: Convergence
Apply the finite difference operator La to z;x, that is,

Lazjk = Lau(X;, yk) — Lawjk = Lau(x;, yk) — fix = LTE.

We now introduce a comparison function C; y = Xj + y2. We have

0 —h)* — 2% + (4 +h)° (v — h)* — 20 + (v + )2
La Cj k= 2 +F 2 =4,
and C; x is non-negative with a maximum value of 2 at x = y = 1. Let
us define another function ¢; x on the mesh by

1
Cj,k = Zj7k + ZC],k|LTE|maX

SO
1
>0, Y(x;,yk) €Q (*)
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With the (DMP) and (x), ¢;  attains its maximum on the boundary.
However z; , vanishes on the boundary since B.C. exact. Moreover,
the maximum of C; x (on boundary) is 2, 50 max(¢;x) = &|LTE|max.
Now we have

1 . g
Zjk = Gk — 4 Gjk|LTE[max by definition
<k, VY, k, since Cjisnon-negative
1
Sl Zj k < é“—TE‘maxo

We can similarly repeat the analysis to place a lower bound on z; x.
Define

_ 1

Cik = —Zjk + ch,k“—TE\max

S0 LACjx = —LTE + |LTE|max
>0, Vj k.

so the max of ¢; x is attained on the boundary and is equal to
F|ILTE |max-
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Hence

- 1

> —Cjk since C; x is nonnegative

\Y

1
—E\LTE\maX.

We have finally that

1 1
_§“—TE‘max < Zjk < §‘LTE‘max

so z;x — 0 as h — 0 since the scheme is consistent. This is sufficient
to prove convergence.
n

HERIOT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 19 14/ 14



	Poisson equation: Central difference approximation
	Poisson equation: Local truncation error
	Poisson equation: Convergence

