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Distributional and variational formulation

Consider the Poisson problem

(PE)

{
−div

(̂
I∇u

)
= f in Ω

u(x) = 0 on ∂Ω

Distributional formulation: Multiply (PE) with a test function
φ ∈ C∞

0 (Ω), integrate over Ω and the integrate by parts to obtain

0 =

∫
Ω
∇u∇φ− fφ dx ∀φ ∈ C∞

0 (Ω) , (WF)

which is called distributional formulation of (PE).
Variational Energy (VE) associated with (WF):

J(v) =
∫
Ω

1
2
(∇v)2 − fv dx (VE)
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Variational Characterization (VC): The function v ∈ C∞
0 , that

minimizes J(v), is the solution of (PE).

Proof: Let v = u + δu ∈ C∞
0 be any function for which J[v ] is defined

and which satisfies the boundary conditions of the ODE (i.e. δu = 0 at
the boundaries). Then

δJ ≡ J[u + δu]− J[u]

=

∫
Ω

[
1
2

(
(∇u +∇δu)2 − (∇u)2

)
− f ((u + δu)− u)

]
dx

=

∫
Ω

[
(∇u) . (∇δu)− f δu +

1
2
(∇δu)2

]
dx

We can simplify the first term in this expression by using integration by
parts: ∫

Ω
δu∆udx =

∫
∂Ω

δu∇un do −
∫
Ω
(∇δu) . (∇u)dx
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Hence we have

δJ =

∫
Ω
[−∆+ f ] δu dx +

∫
∂Ω

δu∇nu do +O(δu2)

Furthermore the second term in this expression is identically zero
because δu = 0 on the boundary.

At a minimum δJ will vanish at leading order in δu. We see this can
only happen if d2u/dx2 = f since δu is arbitrary inside Ω. In other
words, if u(x) is the function which minimises J[u] then the function
must satisfy d2u/dx2 = f .

■

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 20 5/ 15



Obtaining approximate solutions from (VC) in 1D

Making the ansatz of a Galerkin Approximation (GA) (truncated at
N > 0)

v(x) ≈
N∑

k=1

ckϕk (x), (GA)

where the ϕk (x) are a known set of basis functions and the ck are
unknown coefficients. Inserting this into (VE) gives

J[c] =
∫
Ω

1
2

(
N∑

k=1

ck
dϕk (x)

dx

)2

+
N∑

k=1

ck f (x)ϕk (x)

dx .
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Now minimise over the ck , that is, ∂J/∂cj = 0, j = 1, . . . ,N,∫
Ω

[
dϕj

dx

(
N∑

k=1

ck
dϕk

dx

)
+ f (x , y)ϕj(x , y)

]
dx = 0

⇒
N∑

k=1

ck

∫
Ω

(
dϕj

dx
dϕk

dx

)
dx +

∫
Ω

f (x)ϕj(x)dx = 0

⇒
N∑

k=1

ajkck + bj = 0,

where

aj,k =

∫
Ω

(
dϕj

dx
dϕk

dx

)
dx , bj =

∫
Ω

f (x)ϕj(x).

In matrix form this is
Ac = −b

where
A =

{
ajk
}
, b =

{
bj
}
.

By solving these equations for c we obtain the (GA).
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Piecewise linear basis functions: 1D case

Finite Element Method (FEM): The specific choice of the basis
functions ϕj(x) determines the FEM.
Goal: ϕj(x) simple and supported on a small number of elements,
which are line segments [xj−1, xj ], j = 1 . . . J in 1D.
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Figure: Piecewise linear tent functions, in the case xj = jh, h = 0.1
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Consider BCs such that u(0) = u(1) = 0, and assume f (x) = f = const.

Simplest basis functions: ϕj(x) piecewise linear (Figure)

ϕj(x) =


(x − xj−1)/(xj − xj−1), xj−1 ≤ x ≤ xj
(xj+1 − x)/(xj+1 − xj), xj ≤ x ≤ xj+1

0, otherwise.

and takes value 1 at x = xj .

Since u(x) = 0 on the boundaries, in total there are J − 1 basis
functions ϕj , j = 1, . . . , J − 1.
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Calculate the right-hand side bj

bj =

∫ 1

0
f (x)ϕj(x)dx =

∫ 1

0
fϕj(x)dx = f

∫ xj

xj−1

(x − xj−1)

(xj − xj−1)
dx

+ f
∫ xj+1

xj

(x − xj+1)

(xj − xj+1)
dx

=
f
2
(x − xj−1)

2

(xj − xj−1)

∣∣∣∣∣
x=xj

x=xj−1

+
f
2
(x − xj+1)

2

(xj − xj+1)

∣∣∣∣∣
x=xj+1

x=xj

=
f
2
(xj − xj−1) +

f
2
(xj+1 − xj).

For equally spaced nodes: xj − xj−1 = h for all j , and hence bj = fh.
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Calculate the matrix elements aj ,k

We note that ϕ′
j is a piecewise constant function

ϕ′
j(x) =


1/(xj − xj−1), xj−1 ≤ x ≤ xj
−1/(xj+1 − xj), xj ≤ x ≤ xj+1

0, otherwise.

First calculate ajj =
∫
ϕ′

j(x)
2 dx . The integrand is nonzero over both

[xj−1, xj ] and [xj , xj+1].

ajj =

∫
ϕ′

j(x)
2 dx =

∫ xj

xj−1

1
(xj − xj−1)2 dx +

∫ xj+1

xj

1
(xj − xj+1)2 dx ,

=
1

(xj − xj−1)
+

1
(xj+1 − xj)
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In the equally spaced case, we can simplify the final result to ajj = 2/h.

Now consider aj−1,j =
∫
ϕ′

j−1(x)ϕ
′
j(x)dx . The integrand is nonzero

only over [xj−1, xj ].

aj−1 j =

∫ xj

xj−1

ϕ′
j−1(x)ϕ

′
j(x)dx

=

∫ xj

xj−1

−1
(xj − xj−1)

· 1
(xj − xj−1)

dx = − 1
(xj − xj−1)

In the equally spaced case, this gives aj−1 j = −1/h.

A similar calculation shows that aj,j+1 = −1/(xj+1 − xj), which reduces
to −1/h in the equally spaced case.
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So finally, in the equally spaced case, we have
2/h −1/h 0
−1/h 2/h −1/h 0

. . . . . . . . . . . .
0 −1/h 2/h




c1
c2
...

cJ−1

 = −


fh
fh
...

fh

 .

Remark: After multiplying by −h we get the central difference
approximation (CDA).
But for non-constant f : For piecewise linear

f (x) =
J−1∑
k=1

fkϕk (x),

with f (0) = f (1) = 0 we find after some calculation that

bj =

∫ 1

0
ϕj(x)

(
J−1∑
k=1

fkϕk (x)

)
dx =

h
6
(
fj−1 + 4fj + fj+1

)
,

In the finite difference approach this would be just hfj .
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Nonzero boundary conditions u(0) = α & u(1) = β

Simply add extra “end” basis functions to the approximation of u(x),
i.e.,

v(x) ≈ ṽ(x) = αϕ0 +
J−1∑
k=1

ckϕk (x) + βϕJ

where ϕ0 and ϕJ are shown in the figure.
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Neumann boundary condition

Consider the 1D Poisson equation

(PE)


−div

(̂
I∇u

)
= f in Ω

u(0) = 0 ,

ux(1) = g ,

Integration by part gives (ϕ(0) = 0)∫
Ω
ϕ

(
d2u
dx2

)
dx =

[
ϕ

du
dx

]1

0
−
∫
Ω

(
dϕ
dx

)
.

(
du
dx

)
dx ,

and with the boundary conditions[
ϕ

du
dx

]1

0
= ϕ(1)

du(1)
dx︸ ︷︷ ︸

=ϕ(1)g

− ϕ(0)
du(0)

dx︸ ︷︷ ︸
ϕ(0)=0

= ϕ(1)g .

The variational formulation of the Poisson problem reads now∫ 1

0

du(x)
dx

dϕ(x)
dx

dx = ϕ(1)g −
∫ 1

0
f (x)ϕ(x)dx .
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