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@ Distributional and variational formulations

@ Linear FEM 1D
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Distributional and variational formulation

Consider the Poisson problem

(PE) { —div (fvu) = f inQ
u(x)=0 on 09

Distributional formulation: Multiply (PE) with a test function
¢ € C5°(Q), integrate over Q and the integrate by parts to obtain

oz/ww—f@dx Vo e CP(Q),  (WF)
Q

which is called distributional formulation of (PE).
Variational Energy (VE) associated with (WF):

1 2
J(v)= [ =(Vv) —fvdx (VE)
Q2
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Variational Characterization (VC): The function v € Cg°, that
minimizes J(v), is the solution of (PE).

Proof: Let v = u + du € C5° be any function for which J[v] is defined
and which satisfies the boundary conditions of the ODE (i.e. ju = 0 at
the boundaries). Then

0 = J[u+du]—Ju
— /Q [; ((Vu+ Viu)? — (Vu)z) — f((u+du) — u)] dx

_ /Q {(Vu).(vau)—fawé(v&u)?] dx

We can simplify the first term in this expression by using integration by
parts:

/5uAudx: juvun do—/ (Véu) . (Vu)dx
Q o9 Q
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Hence we have

5J = / [—A+flsudx + [ 6uVaudo+O(5R)
Q o9
Furthermore the second term in this expression is identically zero
because du = 0 on the boundary.

At a minimum ¢J will vanish at leading order in ju. We see this can
only happen if d?u/dx? = f since du is arbitrary inside Q. In other
words, if u(x) is the function which minimises J[u] then the function
must satisfy d?u/dx? = f.
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Obtaining approximate solutions from (VC) in 1D

Making the ansatz of a Galerkin Approximation (GA) (truncated at
N > 0)

N
~ 3" cion(x), (GA)
k=1

where the ¢, (x) are a known set of basis functions and the ¢, are
unknown coefficients. Inserting this into (VE) gives

J[c]/ﬂ{; (kﬁ;ckdcbkx ) +Zcf ]
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Now minimise over the ¢, thatis, 9J/0¢; =0, j=1,... N,
N

/ [d¢/ (Z kdik> + (X, y)j(x, y)] dx =0
:>Z /(d¢/d¢k>dX+/f(x)¢] X)dx 0

N
:Z jkCk + bj = (0),
k=1

do; d
au= [ (G5 ) @ b= [ o0

In matrix form this is

where

Ac=-b
where
A={ak}, b={b}.
By solving these equations for ¢ we obtain the (GA).
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Piecewise linear basis functions: 1D case

Finite Element Method (FEM): The specific choice of the basis
functions ¢;(x) determines the FEM.

Goal: ¢;(x) simple and supported on a small number of elements,
which are line segments [x;_1,x],j =1...Jin 1D.
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Figure: Piecewise linear fent functions, in the case x; = jh, h = 0.1
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Consider BCs such that u(0) = u(1) = 0, and assume f(x) = f = const.

Simplest basis functions: ¢;(x) piecewise linear (Figure)

(X =X-1)/ (X = X—1), X1 S X< X
oj(x) = ¢ (X1 — X)/ (X1 — %), X < X < Xjiq
0, otherwise.

and takes value 1 at x = x;.

Since u(x) = 0 on the boundaries, in total there are J — 1 basis
functions ¢;,j =1,...,J — 1.
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Calculate the right-hand side b;

N (X = Xj-1)

ax
—1 (X — Xj—1)

b; = /01 f(x)pj(x) dx = /01 foj(x) dx = f/x

pr [ 020 g
x (X — Xit1)

3=y X=Xj 1

(X —x1)?

_f f(x=X1)?
2 (X — Xj-1)

2 (% — x41)

X=Xj_1 X=X;

f f
= 5% = Xj-1) + 5 (X1 = X).

For equally spaced nodes: x; — x;_; = hfor all j, and hence b; = fh.
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Calculate the matrix elements g; «

We note that gzb} is a piecewise constant function

/(6= x-1),  X1<x<X
Pi(x) =9 —1/(X1—%), X< x < X4
0, otherwise.

First calculate a; = [ <;Sj-(x)2 dx. The integrand is nonzero over both
[Xj—1, x]] and [x;, Xj1.1].

o [aoora— [1 e [T g
— (X X = X X,
J / Xj_1 (Xj - Xjf1)2 X (Xj - Xj+1)2

1 N 1
(X —=X-1) (X1 —X)
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In the equally spaced case, we can simplify the final result to a; = 2/h.

Now consider a;_1; = [ ¢;_4(x) ¢j(x) dx. The integrand is nonzero
only over [x;_1, Xj].

a1y= [ o406 ox

/Xf —1 1 1
— dX -
xiy (Xi—Xji—1) (X — Xj—1) (X — Xj—1)

J

In the equally spaced case, this gives g@;_1; = —1/h.

A similar calculation shows that a; ;1 = —1/(X;11 — X;), which reduces
to —1/hin the equally spaced case.
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So finally, in the equally spaced case, we have

2/h -1/h 0 ¢ th
~1/h 2/h -1/h 0 Co th
0 -—1/h 2/h Cyt th

Remark: After multiplying by —h we get the central difference
approximation (CDA).
But for non-constant f: For piecewise linear

J—1
f(x) =Y fudk (),
k=1
with f(0) = f(1) = 0 we find after some calculation that

1 J—1 h
by = / 9j(x) | D_ feon(x) | o = (fio1 + 46+ fir1)
0 k=1 6

In the finite difference approach this would be just hf;.
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Nonzero boundary conditions u(0) = a & u(1) =5

Simply add extra “end” basis functions to the approximation of u(x),

i.e.,
J—1

V(X) ~ 7(X) = ago + Y _ Ckpk(X) + By

k=1
where ¢g and ¢, are shown in the figure.
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Neumann boundary condition
Consider the 1D Poisson equation
—div (IVu) = f inQ
(PE) u(0)=0,

UX(1) = ga
Integration by part gives (¢(0) = 0)

d?u du do du
foo (&) 2= {“ﬁdx] - [,(5)- (5)
and with the boundary conditions
du’ B du(1) 0 U@ _
=¢(1)g #(0)=0
The variational formulation of the Poisson problem reads now

du(x) do(x)
L dd-¢g/f x)dx.
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