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Recall distributional and variational formulation
Consider the Poisson problem
(PE) —div (IVU) =f inQ
ux)=0 on 0Q

Distributional formulation: Multiply (PE) with a test function
¢ € C3°(92), integrate over Q and the integrate by parts to obtain

0:/VUV<p—fgodX Vo e C(Q),  (WF)
Q

which is called distributional formulation of (PE).
Variational Energy (VE) associated with (WF):

1
J(v):/ ~ (V)2 — fvdx (VE)
Q2
Variational Principle:
: Lecture 20 e
Solving PDE (PE) °°&°%  Minimising (VE) hrgior
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Obtaining approximate solutions from (VC) in 2D
As in the 1D case, we make the ansatz of a Galerkin approximation
N
V(X7y)%ch¢>k(X,y), (GA)
k=1

where the ¢« (x, y) are a known set of basis functions and the cx are
unknown coefficients. We then insert this into to get

(& asen)) 1 (L e\
J[c]_//Q{2 (; Ckikax ) +5 ;Ckk(?y
N

£ aud(x,)ou(x.y)]| dx .
k=1
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Now minimise over the cy, for this we require that
0J/oci=0,j=1,....N

06 (= 0o\ 0% [~ 0ok
i (o) <o (o)
T f(x,y)cb,-(x,y)] dxdy =0,

Z //ax/ax a;/]aydd+//fXY¢,(Xy)dxdy 0,

Zajﬁkck +b; =0,
k—1

where

_ 8¢/8¢k 3¢/8¢>k
a= [ [ Gl ik axay. b= [ [ fepexpdxay.
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In matrix form this is given by

Ac

Il
|
o

as in the 1D case, where

A={gx}, b={b}.

By solving these equations for ¢ we obtain the (GA).
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Triangular elements & linear basis functions

Finite Element Method (FEM) in 2D: We look for a FEM
discretization to (PE), i.e.,

U + Uy = inQ:=[0,1],
u=20 on 0N .
Ansatz: We use the Galerking approximation

u(x,y) = w(x,y) = chebkxy
=1

where the ¢, satisfy the equation.

Ac = —b,
for A= {aj«}, and
Cq b1
C2 bo
CcC = 5 b — .
CN b-N
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Triangulation: The simplest way to devide €2 into elements is to adopt
a regular triangulation.

Nodes: Are the vertices of triangular elements

Labelling: We fix one node and label it ‘0" and its nearest
neighbouring nodes we label by '1’ to ’6’.

We compute now: ay and b;for j=0,...,6 and k =0,...,6
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5 4

Choose ¢y(x, y) linearin x and y in each triangle A012, A023, i.e.
$o(X,y) = a + box + coy ,

with ag, by, ¢y differentin each triangle. E.g. in A012, we choose
ap, bo, Co s-t. ¢o(X0, ¥0) =1, P0(X1,¥1) = 0, po(X2, y2) = 0, where
(X, yx) are the coordinates of node k. Similarly in A012,

P1(x,y) = ay + bix + ¢y,
with the constants ay, by, ¢y chosen such that
#1(X0, Yo) = 0,01(x1, 1) = 1,01(x2, y2) = 0.
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Compute agq: Only the triangles A012 and A016 contribute.
[

Consider A012: For equal sides h. Without loss of generality, we can
move the origin to node 0.
We have
1 h 1 1
QZ)O_E( _y)v ¢1_E(y_x)v ¢2—

9o _ o 991 _ 1 9% _ 1 9 _1

ox 7 ox h 9y h 8y h°
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The contribution to aygq from A012 is
—1 —1 1 1 h 1
o ()4 (3) () o= 5=
//A012< ( h ) h h 4 2 2
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Consider A016:

5 4 6 x 0

A short calculation shows that

1 1 1
%o :E(h+X—Y); ¢1:B}’7 ¢6:_Exa
ox _h ox 1% h™ 9y h

The contribution to agq from A016 is

Jon5) (o=

Hence ap1 = —% — 5 = —1 and by symmetry,

803 = dosa = Aps = Aot = —1. T
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Compute ago: Only A012 and A023 contribute.

1 2

5 4

Consider A012: From the computation of gy it follows that

3¢o_0 dp2 1 d¢pg 1 3¢2_0

ax 0 ox h 9y h oy 7

so the contribution to ag is zero. By symmetry, the contribution from
A023 is zero too. So ago = 0, and by symmetry, ags = 0 as well.
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Compute agg: A012, A023, A034, A045, A056, & A016 contribute.

1 2

5 4

Consider A012:  [[, 01, (0% + 75) dx dy = }. and the same from
A023, A045, and A056 by symmetry.

Consider A016:  [[,016 (7 + 72) dx dy = 1, and the same from

A034 by symmetry.
The total is
1 1 1

1
300:§+§+§+§+1+1—4

HERIOT
FIWATT
= uNIvERSITY

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 21 14/ 17



Compute by: A012, A023, A034, A045, A056, & A016 contribute.

1 2

Consider A012:

f// —(h—y)dxdy = - /yh y)dy

fy2  fy3 fh2

By symmetry, there is the same contribution from A023, A045, A056.
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5 4
Consider A016:
f rh px=0 £ orh , il
h/o /X_ (h+x—y)dxdy:2h/(h+x—y) dy
=y—h 0 x=y—h
e

for 2 f 3
= o5 |, (- yPdy = —gpin-y| =
and the same from A034 by symmetry. So the total contribution to by is
fh?

= — = Kf.
bo 6 x 6
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So finally the equation for ¢, from node 0 is

—(c1+C3+cC4+Cs) +4cC) = —Hf

or
(C1 +C3+C4+Cs)—400:h2f.

This is the same, in this simple case, as in the Central Difference
approximation of

Uxx+Uyy:f

Remark: Note that FEM allows us to cover a more complicated area
with triangles and hence we are able to deal with odd shapes.
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