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Recall distributional and variational formulation

Consider the Poisson problem

(PE)

{
−div

(̂
I∇u

)
= f in Ω

u(x) = 0 on ∂Ω

Distributional formulation: Multiply (PE) with a test function
φ ∈ C∞

0 (Ω), integrate over Ω and the integrate by parts to obtain

0 =

∫
Ω
∇u∇φ− fφ dx ∀φ ∈ C∞

0 (Ω) , (WF)

which is called distributional formulation of (PE).
Variational Energy (VE) associated with (WF):

J(v) =
∫
Ω

1
2
(∇v)2 − fv dx (VE)

Variational Principle:

Solving PDE (PE) Lecture 20⇔⇔⇔ Minimising (VE)
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Obtaining approximate solutions from (VC) in 2D

As in the 1D case, we make the ansatz of a Galerkin approximation

v(x , y) ≈
N∑

k=1

ckϕk (x , y), (GA)

where the ϕk (x , y) are a known set of basis functions and the ck are
unknown coefficients. We then insert this into to get

J[c] =
∫ ∫

Ω

[
1
2

(
N∑

k=1

ck
∂ϕk (x , y)

∂x

)2

+
1
2

(
N∑

k=1

ck
∂ϕk (x , y)

∂y

)2

+
N∑

k=1

ck f (x , y)ϕk (x , y)
]

dx dy .
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Now minimise over the ck , for this we require that
∂J/∂cj = 0, j = 1, . . . ,N

∫ ∫
Ω

[
∂ϕj

∂x

(
N∑

k=1

ck
∂ϕk

∂x

)
+

∂ϕj

∂y

(
N∑

k=1

ck
∂ϕk

∂y

)

+ f (x , y)ϕj(x , y)
]

dx dy = 0 ,

N∑
k=1

ck

∫ ∫
Ω

∂ϕj

∂x
∂ϕk

∂x
+

∂ϕj

∂y
∂ϕk

∂y
dxdy +

∫ ∫
Ω

f (x , y)ϕj(x , y)dx dy = 0 ,

N∑
k=1

aj,kck + bj = 0 ,

where

aj,k =

∫ ∫
Ω

∂ϕj

∂x
∂ϕk

∂x
+

∂ϕj

∂y
∂ϕk

∂y
dx dy , bj =

∫ ∫
Ω

f (x , y)ϕj(x , y)dx dy .

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 21 5/ 17



In matrix form this is given by

Ac = −b

as in the 1D case, where

A =
{

aj,k
}
, b =

{
bj
}
.

By solving these equations for c we obtain the (GA).
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Triangular elements & linear basis functions

Finite Element Method (FEM) in 2D: We look for a FEM
discretization to (PE), i.e.,{

uxx + uyy = f in Ω := [0,1]2 ,
u = 0 on ∂Ω .

Ansatz: We use the Galerking approximation

u(x , y) ≈ w(x , y) =
N∑

i=1

ckϕk (x , y)

where the ck satisfy the equation.
Ac = −b,

for A = {aj,k}, and

c =

 c1
c2
...

cN

 , b =

 b1
b2
...

bN

 .

aj,k and bj are defined through

aj,k =

∫ 1

0

∫ 1

0

∂ϕj

∂x
∂ϕk

∂x
+

∂ϕj

∂y
∂ϕk

∂y
dx dy , bj =

∫ 1

0

∫ 1

0
fϕj dx dy
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Triangulation: The simplest way to devide Ω into elements is to adopt
a regular triangulation.

Nodes: Are the vertices of triangular elements

Labelling: We fix one node and label it ’0’ and its nearest
neighbouring nodes we label by ’1’ to ’6’.

We compute now: ajk and bj for j = 0, . . . , 6 and k = 0, . . . , 6
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0

4

1 2

3

5

6

Choose ϕ0(x , y) linear in x and y in each triangle ∆012, ∆023, i.e.

ϕ0(x , y) = a0 + b0x + c0y ,

with a0,b0, c0 different in each triangle. E.g. in ∆012, we choose
a0,b0, c0 s.t. ϕ0(x0, y0) = 1, ϕ0(x1, y1) = 0, ϕ0(x2, y2) = 0, where
(xk , yk ) are the coordinates of node k . Similarly in ∆012,

ϕ1(x , y) = a1 + b1x + c1y ,

with the constants a1,b1, c1 chosen such that

ϕ1(x0, y0) = 0, ϕ1(x1, y1) = 1, ϕ1(x2, y2) = 0.
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Compute a01: Only the triangles ∆012 and ∆016 contribute.

0

4

1 2

3

5

6

0

1 2

→ x

→
 y

Consider ∆012: For equal sides h. Without loss of generality, we can
move the origin to node 0.
We have

ϕ0 =
1
h
(h − y), ϕ1 =

1
h
(y − x), ϕ2 =

1
h

x ,

∂ϕ0

∂x
= 0,

∂ϕ1

∂x
= −1

h
,

∂ϕ0

∂y
= −1

h
,

∂ϕ1

∂y
=

1
h
.
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0

1 2

→ x

→
 y

The contribution to a01 from ∆012 is∫∫
∆012

(
0 ·
(
−1
h

)
+

(
−1
h

)
·
(

1
h

))
dx dy = − 1

h2 · h2

2
= −1

2
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Consider ∆016:

0

4

1 2

3

5

6

6 0

1

→ x

→
 y

A short calculation shows that

ϕ0 =
1
h
(h + x − y), ϕ1 =

1
h

y , ϕ6 = −1
h

x ,

∂ϕ0

∂x
=

1
h
,

∂ϕ1

∂x
= 0,

∂ϕ0

∂y
= −1

h
,

∂ϕ1

∂y
=

1
h
.

The contribution to a01 from ∆016 is∫∫
∆016

(
−1
h

)
·
(

1
h

)
dx dy = −1

2
.

Hence a01 = −1
2 − 1

2 = −1 and by symmetry,

a03 = a04 = a06 = a01 = −1.
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Compute a02: Only ∆012 and ∆023 contribute.
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Consider ∆012: From the computation of a01 it follows that

∂ϕ0

∂x
= 0,

∂ϕ2

∂x
=

1
h
,

∂ϕ0

∂y
= −1

h
,

∂ϕ2

∂y
= 0,

so the contribution to a02 is zero. By symmetry, the contribution from
∆023 is zero too. So a02 = 0, and by symmetry, a05 = 0 as well.
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Compute a00: ∆012, ∆023, ∆034, ∆045, ∆056, & ∆016 contribute.

0
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3

5

6

Consider ∆012:
∫∫

∆012

(
02 + 1

h2

)
dx dy = 1

2 . and the same from
∆023, ∆045, and ∆056 by symmetry.

Consider ∆016:
∫∫

∆016

( 1
h2 + 1

h2

)
dx dy = 1 , and the same from

∆034 by symmetry.

The total is
a00 =

1
2
+

1
2
+

1
2
+

1
2
+ 1 + 1 = 4.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 21 14/ 17



Compute b0: ∆012, ∆023, ∆034, ∆045, ∆056, & ∆016 contribute.
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3
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Consider ∆012:

f
∫ h

0

∫ x=y

x=0

1
h
(h − y)dx dy =

f
h

∫ h

0
y(h − y)dy

=
f
h

∫ h

0
hydy − f

h

∫ h

0
y2dy =

[
fy2

2
− fy3

3h

]h

0
=

fh2

6
.

By symmetry, there is the same contribution from ∆023, ∆045, ∆056.
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Consider ∆016:

f
h

∫ h

0

∫ x=0

x=y−h
(h + x − y)dx dy =

f
2h

∫ h

0
(h + x − y)2

∣∣∣∣∣
x=0

x=y−h

dy

=
f

2h

∫ h

0
(h − y)2dy = − f

6h
(h − y)3

∣∣∣∣h
0
=

fh2

6
,

and the same from ∆034 by symmetry. So the total contribution to b0 is

b0 = 6 × fh2

6
= h2f .
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So finally the equation for c0 from node 0 is

−(c1 + c3 + c4 + c6) + 4c0 = −h2f

or
(c1 + c3 + c4 + c6)− 4c0 = h2f .

This is the same, in this simple case, as in the Central Difference
approximation of

uxx + uyy = f .

Remark: Note that FEM allows us to cover a more complicated area
with triangles and hence we are able to deal with odd shapes.
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