Numerical Methods for PDEs

Elliptic PDEs: FEM 2D/Sobolev spaces/Stability/Error estimates

(Lecture 23, Week 8)

Markus Schmuck

Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

Edinburgh, March 5, 2014

Rectangular elements and bilinear basis functions

Rectangular elements and bilinear basis functions

Rectangular domains: Can be covered by rectangular elements with *bilinear basis functions*

$$\phi_0(x, y) = \frac{1}{h^2} (h - x)(h - y)$$

$$\phi_1(x, y) = \frac{1}{h^2} (h - x)y$$

$$\phi_2(x, y) = \frac{1}{h^2} xy,$$

$$\phi_3(x, y) = \frac{1}{h^2} x(h - y)$$

We can now repreat the previous calculations with these new basis functions.

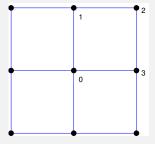


Figure : In the square 0123, we define 4 basis functions ϕ_k each taking value 1 at node *k* and 0 at the other nodes

(1-x)*y

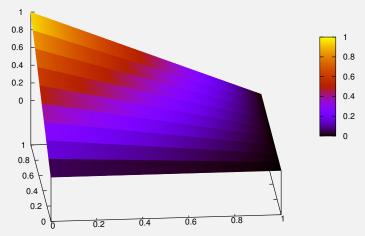


Figure : Plot of the ϕ_1 bilinear basis function for h = 1.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 23

4/14

Stability and error estimates for FEM

Goal: Derivation of error estimates between the exact solution *u* for elliptic problems

$$(\nabla u, \nabla \phi) + (u, \phi) = (f, \phi) \quad \forall \phi \in V,$$

and the finite element solution w

 $(\nabla \boldsymbol{w}, \nabla \phi) + (\boldsymbol{w}, \phi) = (f, \phi) \quad \forall \phi \in \boldsymbol{V}_h.$

Assumptions: *f* is constant, Ω is the unit squar, and u = 0 on the boundary **Notation:** (ϕ, ψ) means

$$(\phi,\psi)=\int_\Omega \phi\psi\,d{f x}\,.$$

 V_h is the space of piecewise linear finite element basis functions.

Sobolev spaces

The $L_2(\Omega)$ Hilbert space is a space of integrable real-valued functions $\phi : \Omega \to \mathbb{R}$ for which the following norm (or integral) is bounded:

$$\|\phi\|^2_{L_2(\Omega)} = \int_\Omega \phi^2 \mathsf{d}\Omega < \infty.$$

We call the above norm the L_2 -norm and for simplicity use the notation without the subscript, i.e., $\|\cdot\| \equiv \|\cdot\|_{L_2(\Omega)}$.

The functions ϕ belonging to the space $L_2(\Omega)$ are also called $L_2(\Omega)$ -integrable.

The space of L_2 -integrable functions $\phi \in L_2(\Omega)$ is equipped with the following scalar product

$$(\psi,\phi)=\int_{\Omega}\psi\phi\, d{f x}<\infty.$$

Note that the scalar product satisfies

$$(\phi,\phi) = \|\phi\|^2.$$

Further the L_2 -scalar product satisfies the so-called Cauchy-Schwartz inequality

 $|(\phi, \psi)| \le ||\phi|| \, ||\psi||.$

The space $H^1(\Omega)$ (also called first Sobolev space) is a space of functions which are bounded in the following norm

$$\|\phi\|_{H^1(\Omega)}^2 = \|\phi\|^2 + \|\nabla\phi\|^2 < \infty.$$

Thus the $H^1(\Omega)$ space contains L_2 -integrable functions with L_2 -integrable first order derivatives.

The space $H^2(\Omega)$ (also called second Sobolev space) is the space of functions which are bounded in the following norm

 $\|\phi\|_{H^2(\Omega)}^2 = \|\phi\|^2 + \|\nabla\phi\|^2 + \|\nabla^2\phi\|^2 < \infty.$ (*)

Thus the $H^2(\Omega)$ space contains L_2 -integrable functions with L_2 -integrable first and second order derivatives. Note, that the norm (*) is a slightly simplified version of the true H^2 -norm, but the two norms are equivalent for simple domains Ω , such as considered here. Further we define the H^1 and H^2 semi-norms as

 $|\phi|_{H^1} = \|\nabla\phi\| \quad \text{and} \quad |\phi|_{H^2} = \|\nabla^2\phi\|,$

respectively.

8/14

The H^1 and H^2 spaces are more general analogues of the spaces $C^1(\Omega)$ (smooth functions with continuous first order derivatives) and $C^2(\Omega)$ (smooth functions with continuous second order derivatives). We also have that $C^1(\Omega) \subset H^1$, $C^2(\Omega) \subset H^2$ and $H^2 \subset H^1 \subset L_2(\Omega)$. The following inequality (which is a combination of the Cauchy-Schwarz and Young's $(|a| |b| \le C_{\epsilon} |a|^2 + \epsilon |b|^2$ for $a, b \in \mathbb{R}^d$, $d \ge 1$) inequalities) will be useful

 $|(\phi,\psi)| \le C_{\epsilon} \|\phi\|^2 + \epsilon \|\psi\|^2 \qquad \forall \phi, \psi \in L^2,$

where $\epsilon > 0$ is a arbitrary small positive constant, and C_{ϵ} is a positive constant depending on ϵ (C_{ϵ} grows for $\epsilon \to 0$). Note that for $\epsilon = 1/2$ the above inequality becomes

$$(\phi,\psi) \leq rac{1}{2} \|\phi\|^2 + rac{1}{2} \|\psi\|^2 \qquad orall \phi, \psi \in L^2.$$

Interpolation

We define the interpolation operator $I^h : C(\Omega) \to V^h$ from the space of continuous function to the space V^h of piecewise linear functions such that

 $I^h\phi(\mathbf{x}_k)=\phi(\mathbf{x}_k),$

for all points \mathbf{x}_k that belong to the finite element mesh. Thus, for a given continuous function ϕ , the interpolation operator produces a piecewise linear function $I^h \phi$ that is equal to the original function at all mesh points. For a function ϕ , the function $I^h \phi$ is called the interpolant of ϕ .

The error between a function $\phi \in H^2$ and its piecewise linear interpolant $I^h \phi \in V^h$ can be estimated from the following "interpolation estimate"

 $\|\phi - \mathbf{I}^{\mathbf{h}}\phi\|_{\mathbf{H}^{1}} \leq \mathbf{C}\mathbf{h}|\phi|_{\mathbf{H}^{2}} \qquad \forall \phi \in \mathbf{H}^{2},$

where *h* is the mesh size and *C* is a fixed positive constant independent of *h*. We can see that $l^h \phi \to \phi$ as $h \to 0$, i.e. the error gets smaller for finer meshes.

Stability

The finite element solution w satisfies

 $(\nabla \boldsymbol{w}, \nabla \phi) + (\boldsymbol{w}, \phi) = (f, \phi) \quad \forall \phi \in \boldsymbol{V}_h.$

The above equality is valid for any $\phi \in V^h$, thus we can take $\phi = w \in V^h$. Then (1) becomes

$$(\nabla w, \nabla w) + (w, w) = (f, w),$$

which is equivalent to

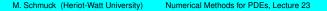
$$\|w\|_{H^1}^2 = (f, w).$$

The RHS can be estimated using Hölder & Young's inequality with $\epsilon = 1/2$ as

$$(f, w) \leq \frac{1}{2} \|f\|^2 + \frac{1}{2} \|w\|^2.$$

After combining the above calculations we arrive at

$$\|w\|_{H^1}^2 = \|w\|^2 + \|\nabla w\|^2 = \frac{1}{2}\|f\|^2 + \frac{1}{2}\|w\|^2.$$



(1)

Next we subtract $\frac{1}{2} \|w\|^2$ from the above equation and get

 $\|w\|^2 + \frac{1}{2}\|\nabla w\|^2 \le \|f\|^2,$

which is equivalent to

 $\|w\|_{H^1}^2 \leq C \|f\|^2$,

for some (fixed) positive constant *C* independent of *f*, *w*, *h*. Thus, if $f \in L^2$, we have just shown that finite element solution *w* is bounded in H^1 -norm by a constant that depends on *f* and Ω (but not on *h*). Thus, the finite element solution is stable in the $V^h \approx H^1$ space for any *h*.

Error estimates

The exact solution *u* satisfies

 $(\nabla u, \nabla \phi) + (u, \phi) = (f, \phi) \quad \forall \phi \in H^1(\Omega).$ (2)

The finite element solution satisfies

 $(\nabla \boldsymbol{w}, \nabla \phi) + (\boldsymbol{w}, \phi) = (f, \phi) \qquad \forall \phi \in \boldsymbol{V}^h \subset \boldsymbol{H}^1(\Omega).$ (3)

We subtract (3) from (2) and for all $\phi \in V^h$ we have

 $(\nabla \boldsymbol{e}_{\boldsymbol{h}}, \nabla \phi) + (\boldsymbol{e}_{\boldsymbol{h}}, \phi) = \mathbf{0},$

where $e_h = u - w$. Next, we set $\phi = l^h u - w$ and get

$$(\nabla \boldsymbol{e}_h, \nabla (\boldsymbol{I}^h \boldsymbol{u} - \boldsymbol{w})) + (\boldsymbol{e}_h, \boldsymbol{I}^h \boldsymbol{u} - \boldsymbol{w}) \\= (\nabla \boldsymbol{e}_h, \nabla (\boldsymbol{I}^h \boldsymbol{u} \mp \boldsymbol{u} - \boldsymbol{w})) + (\boldsymbol{e}_h, \boldsymbol{I}^h \boldsymbol{u} \mp \boldsymbol{u} - \boldsymbol{w}) \\= \|\nabla \boldsymbol{e}_h\|^2 + \|\boldsymbol{e}_h\|^2 + (\nabla \boldsymbol{e}_h, \nabla (\boldsymbol{I}^h \boldsymbol{u} - \boldsymbol{u})) + (\boldsymbol{e}_h, (\boldsymbol{I}^h \boldsymbol{u} - \boldsymbol{u})) \\= \mathbf{0}$$

After putting the last two term to the RHS we obtain

 $\|\nabla e_h\|^2 + \|e_h\|^2 = (\nabla e_h, \nabla (u - I^h u)) + (e_h, (u - I^h u)).$

Next, we apply the inequality Hölder's & Young's ineq. with $\epsilon = 1/2$

$$\|\nabla e_h\|^2 + \|e_h\|^2 \leq \frac{1}{2} \left(\|\nabla e_h\|^2 + \|e_h\|^2\right) + \frac{1}{2}\|u - I^h u\|_{H^1}^2.$$

We move the first two terms on the RHS to the LHS and use the interpolation inequality to get

$$\frac{1}{2}(\|\nabla \boldsymbol{e}_{h}\|^{2}+\|\boldsymbol{e}_{h}\|^{2})\leq \|\boldsymbol{u}-\boldsymbol{I}^{h}\boldsymbol{u}\|_{H^{1}}^{2}\leq Ch^{2}|\boldsymbol{u}|_{H^{2}(\Omega)}^{2}.$$

Which, after taking a square root, proves

 $\|e_h\|_{H^1(\Omega)} \leq Ch|u|_{H^2(\Omega)}.$

We have just shown that if the exact solution $u \in H^2$ (i.e., $|u|_{H^2(\Omega)}$ is bounded) then

$$\|u-w\|_{H^1}pprox O(h).$$

