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Rectangular elements and bilinear basis functions
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Figure : In the square 0123,
we define 4 basis functions φk
each taking value 1 at node k
and 0 at the other nodes

Rectangular domains: Can be covered by rectangular elements with
bilinear basis functions

φ0(x , y) =
1
h2 (h − x)(h − y),

φ1(x , y) =
1
h2 (h − x)y

φ2(x , y) =
1
h2 xy ,

φ3(x , y) =
1
h2 x(h − y)

We can
now repreat the previous calculations
with these new basis functions.
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Figure : Plot of the φ1 bilinear basis function for h = 1.
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Stability and error estimates for FEM

Goal: Derivation of error estimates between the exact solution u for
elliptic problems

(∇u,∇φ) + (u, φ) = (f , φ) ∀φ ∈ V ,

and the finite element solution w

(∇w ,∇φ) + (w , φ) = (f , φ) ∀φ ∈ Vh.

Assumptions: f is constant, Ω is the unit squar, and u = 0 on the
boundary
Notation: (φ, ψ) means

(φ, ψ) =

∫
Ω
φψ dx .

Vh is the space of piecewise linear finite element basis functions.
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Sobolev spaces

The L2(Ω) Hilbert space is a space of integrable real-valued functions
φ : Ω→ R for which the following norm (or integral) is bounded:

‖φ‖2L2(Ω) =

∫
Ω
φ2dΩ <∞.

We call the above norm the L2-norm and for simplicity use the
notation without the subscript, i.e., ‖ · ‖ ≡ ‖ · ‖L2(Ω).
The functions φ belonging to the space L2(Ω) are also called
L2(Ω)-integrable.
The space of L2-integrable functions φ ∈ L2(Ω) is equipped with the
following scalar product

(ψ, φ) =

∫
Ω
ψφdx <∞.

Note that the scalar product satisfies

(φ, φ) = ‖φ‖2.
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Further the L2-scalar product satisfies the so-called Cauchy-Schwartz
inequality

|(φ, ψ)| ≤ ‖φ‖ ‖ψ‖ .

The space H1(Ω) (also called first Sobolev space) is a space of
functions which are bounded in the following norm

‖φ‖2H1(Ω) = ‖φ‖2 + ‖∇φ‖2 <∞.

Thus the H1(Ω) space contains L2-integrable functions with
L2-integrable first order derivatives.
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The space H2(Ω) (also called second Sobolev space) is the space of
functions which are bounded in the following norm

‖φ‖2H2(Ω) = ‖φ‖2 + ‖∇φ‖2 + ‖∇2φ‖2 <∞. (∗)(∗)(∗)

Thus the H2(Ω) space contains L2-integrable functions with
L2-integrable first and second order derivatives. Note, that the norm
(∗)(∗)(∗) is a slightly simplified version of the true H2-norm, but the two
norms are equivalent for simple domains Ω, such as considered here.
Further we define the H1 and H2 semi-norms as

|φ|H1 = ‖∇φ‖ and |φ|H2 = ‖∇2φ‖,

respectively.
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The H1 and H2 spaces are more general analogues of the spaces
C1(Ω) (smooth functions with continuous first order derivatives) and
C2(Ω) (smooth functions with continuous second order derivatives).
We also have that C1(Ω) ⊂ H1, C2(Ω) ⊂ H2 and H2 ⊂ H1 ⊂ L2(Ω).
The following inequality (which is a combination of the
Cauchy-Schwarz and Young’s (|a| |b| ≤ Cε|a|2 + ε|b|2 for a,b ∈ Rd ,
d ≥ 1) inequalities) will be useful

|(φ, ψ)| ≤ Cε‖φ‖2 + ε‖ψ‖2 ∀φ, ψ ∈ L2,

where ε > 0 is a arbitrary small positive constant, and Cε is a positive
constant depending on ε (Cε grows for ε→ 0). Note that for ε = 1/2 the
above inequality becomes

(φ, ψ) ≤ 1
2
‖φ‖2 +

1
2
‖ψ‖2 ∀φ, ψ ∈ L2.
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Interpolation

We define the interpolation operator Ih : C(Ω)→ V h from the space of
continuous function to the space V h of piecewise linear functions such
that

Ihφ(xk ) = φ(xk ),

for all points xk that belong to the finite element mesh. Thus, for a
given continuous function φ, the interpolation operator produces a
piecewise linear function Ihφ that is equal to the original function at all
mesh points. For a function φ, the function Ihφ is called the interpolant
of φ.
The error between a function φ ∈ H2 and its piecewise linear
interpolant Ihφ ∈ V h can be estimated from the following “interpolation
estimate”

‖φ− Ihφ‖H1 ≤ Ch|φ|H2 ∀φ ∈ H2,

where h is the mesh size and C is a fixed positive constant
independent of h. We can see that Ihφ→ φ as h→ 0, i.e. the error
gets smaller for finer meshes.
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Stability

The finite element solution w satisfies

(∇w ,∇φ) + (w , φ) = (f , φ) ∀φ ∈ Vh. (1)

The above equality is valid for any φ ∈ V h, thus we can take
φ = w ∈ V h. Then (1) becomes

(∇w ,∇w) + (w ,w) = (f ,w) ,

which is equivalent to
‖w‖2H1 = (f ,w).

The RHS can be estimated using Hölder & Young’s inequality with
ε = 1/2 as

(f ,w) ≤ 1
2
‖f‖2 +

1
2
‖w‖2.

After combining the above calculations we arrive at

‖w‖2H1 = ‖w‖2 + ‖∇w‖2 =
1
2
‖f‖2 +

1
2
‖w‖2.
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Next we subtract 1
2‖w‖

2 from the above equation and get

‖w‖2 +
1
2
‖∇w‖2 ≤ ‖f‖2,

which is equivalent to
‖w‖2H1 ≤ C‖f‖2,

for some (fixed) positive constant C independent of f , w , h.
Thus, if f ∈ L2, we have just shown that finite element solution w is
bounded in H1-norm by a constant that depends on f and Ω (but not
on h). Thus, the finite element solution is stable in the V h ≈ H1 space
for any h.
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Error estimates

The exact solution u satisfies

(∇u,∇φ) + (u, φ) = (f , φ) ∀φ ∈ H1(Ω). (2)

The finite element solution satisfies

(∇w ,∇φ) + (w , φ) = (f , φ) ∀φ ∈ V h ⊂ H1(Ω). (3)

We subtract (3) from (2) and for all φ ∈ V h we have

(∇eh,∇φ) + (eh, φ) = 0,

where eh = u − w . Next, we set φ = Ihu − w and get

(∇eh,∇(Ihu − w)) + (eh, Ihu − w)
= (∇eh,∇(Ihu ∓ u − w)) + (eh, Ihu ∓ u − w)
= ‖∇eh‖2 + ‖eh‖2 + (∇eh,∇(Ihu − u)) + (eh, (Ihu − u))
= 0
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After putting the last two term to the RHS we obtain

‖∇eh‖2 + ‖eh‖2 = (∇eh,∇(u − Ihu)) + (eh, (u − Ihu)).

Next, we apply the inequality Hölder’s & Young’s ineq. with ε = 1/2

‖∇eh‖2 + ‖eh‖2 ≤
1
2

(
‖∇eh‖2 + ‖eh‖2

)
+

1
2
‖u − Ihu‖2H1 .

We move the first two terms on the RHS to the LHS and use the
interpolation inequality to get

1
2

(‖∇eh‖2 + ‖eh‖2) ≤ ‖u − Ihu‖2H1 ≤ Ch2|u|2H2(Ω).

Which, after taking a square root, proves

‖eh‖H1(Ω) ≤ Ch|u|H2(Ω).

We have just shown that if the exact solution u ∈ H2 (i.e., |u|H2(Ω) is
bounded) then

‖u − w‖H1 ≈ O(h).
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