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The BTCS scheme

Goal: Schemes with better stability properties (so-called θ-schemes)

Idea: Study BTCS schemes, i.e., work at the forward point (xj , tn+1)
and use Backward Difference Approximation in time (Bt/k ) and again
Central Difference Approximation in space (δ2

x/h2),

wn+1
j − wn

j

k
=:

Bt

k
wn+1

j =
δ2

x
h2 wn+1

j :=
wn+1

j−1 − 2wn+1
j + wn+1

j+1

h2 ,

which reads for r := k/h2 as the following implicit scheme

−rwn+1
j−1 + (1 + 2r)wn+1

j − rwn+1
j+1 = wn

j for j = 1,2, . . . , J − 1 .

(Implicit means: Solve a set of simultaneous equations for each time
level.)
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Matrix form of the BTCS scheme

Swn+1 = wn + bn+1

where

S =


1+2r −r 0 . . .
−r 1+2r −r 0 . . .
0 −r 1+2r −r 0
. . . . . . . . . . . . . . .

. . . 0 −r 1+2r

 , wn =


wn

1
wn

2
...
...

wn
J−1

 ,

bn+1 =


rα(tn+1)

0
...
0

rβ(tn+1)

 .
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Example

Problem: For r = 0.4 and J = 4 solve
ut = uxx ,

u(0, t) = u(1, t) = 0 , t > 0 (BC)
u(x ,0) = sin(xπ) , (IC) .

Solution: The I.C.s tell us that

w0 =
[
0,1/

√
2,1,1/

√
2,0

]
.

At n = 1 the BCs tell us that w1
0 = w1

4 = 0. Setting n = 0 in the BTCS
scheme gives (j = 1,2,3)

(1 + 0.8)w1
1 − 0.4w1

2 =w0
1 + 0.4w1

0

− 0.4w1
1 + (1 + 0.8)w1

2 − 0.4w1
3 =w0

2

− 0.4w1
2 + (1 + 0.8)w1

3 =w0
3 + 0.4w1

4
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or

1.8w1
1 − 0.4w1

2 =
1√
2
+ 0.4 × 0

− 0.4w1
1 + 1.8w1

2 − 0.4w1
3 =1

− 0.4w1
2 + 1.8w1

3 =
1√
2
+ 0.4 × 0

or  1.8 −0.4 0
−0.4 1.8 −0.4

0 −0.4 1.8

  w1
1

w1
2

w1
3

 =


1√
2

1
1√
2


Solving this by Gauss elimination gives

w1 = [0,0.5729,0.8102,0.5729,0] .

We now repeat this process to get w2,w3, etc. The exact result is

u1 = exp(−π2k) sin(πxj) = [0,0.5525,0.7813,0.5525,0] .
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Natural generalisation: The θ-method

Take a weigthed average of the FTCS and BTCS scheme

Ft

k
wn

j = (1 − θ)
δ2

x
h2 wn

j + θ
δ2

x
h2 wn+1

j , with θ ∈ (0,1) ,

is called the θ-method for ut = uxx .

Remark. The θ-scheme is
1. the FTCS scheme for θ = 0,
2. the BTCS scheme for θ = 1,
3. implicit for any θ > 0.

For θ ∈ (0,1) the computational molecule looks as follows
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The Crank-Nicolson method: θ = 1/2

For θ = 0.5 we get the so-called Crank-Nicolson scheme

Ft

k
wn

j =
1
2
δ2

x
h2 wn

j +
1
2
δ2

x
h2 wn+1

j .

Setting again r := k/h2 and re-arranging terms leads to

− r
2

wn+1
j−1 + (1 + r)wn+1

j − r
2

wn+1
j+1 =

r
2

wn
j−1 + (1 − r)wn

j +
r
2

wn
j+1 .
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LTE analysis of the θ-method

The θ-scheme can be written as

L∆wn
j :=

Ft

k
wn

j − (1 − θ)
δ2

x
h2 wn

j − θ
δ2

x
h2 wn+1

j = 0.

LTE-procedure:
1. Plug in the exact solution u(xj , tn) instead of wn

j (for all j , n) into
L∆wn

j ,
2. Taylor expand about (x , t) = (xj , tn),
3. Eliminate terms using the PDE.

Remember, do not multiply or divide L∆wn
j by k or h when

working out the LTE.
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We make Taylor series of smooth enough functions u(x , t), i.e.,

Ftu(xj , tn) = u(xj , tn+k)− u(xj , tn)

=

[
k
∂

∂t
+

k2

2!
∂2

∂t2 +
k3

3!
∂3

∂t3 + O(k4)

]
u(xj , tn)

=

[
k ut +

k2

2!
utt +

k3

3!
uttt

]
(xj ,tn)

+ O(k4).

Expanding the 2nd central space difference term δ2
x u(xj , tn) gives

δ2
x u(xj , tn) = u(xj+h, tn)− 2u(xj , tn) + u(xj−h, tn)

=

[
h2 ∂2

∂x2 +
2h4

4!
∂4

∂x4 + O(h6)

]
u(xj , tn)

=

[
h2 uxx +

h4

12
uxxxx

]
(xj ,tn)

+ O(h6).
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The similar term δ2
x u(xj , tn+1) (time level n + 1) becomes

δ2
x u(xj , tn+k) = u(xj+h, tn+k)− 2u(xj , tn+k) + u(xj−h, tn+k)

=

[
h2 uxx +

h4

12
uxxxx + O(h6)

]
(xj ,tn+k)

.

Note that this term is evaluated at time t = tn + k and so it must also
be expanded in k . That is

δ2
x u(xj , tn+k) =

[
h2 uxx +

h4

12
uxxxx + O(h6)

]
(xj ,tn+k)

=

[
1 + k

∂

∂t
+

k2

2!
∂2

∂t2 + . . .

] [
h2 uxx +

h4

12
uxxxx + O(h6)

]
(xj ,tn)

=

[
h2 uxx + kh2 uxxt +

h4

12
uxxxx

]
(xj ,tn)

+ O(kh4, k2h2, h6) .
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(xj ,tn+k)

.

Note that this term is evaluated at time t = tn + k and so it must also
be expanded in k . That is

δ2
x u(xj , tn+k) =

[
h2 uxx +

h4

12
uxxxx + O(h6)

]
(xj ,tn+k)

=

[
1 + k

∂

∂t
+

k2

2!
∂2

∂t2 + . . .

] [
h2 uxx +

h4

12
uxxxx + O(h6)

]
(xj ,tn)

=

[
h2 uxx + kh2 uxxt +

h4

12
uxxxx

]
(xj ,tn)

+ O(kh4, k2h2, h6) .
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We now substitute each of the three terms into L∆wn
j and collect terms

of the same order to get

LTE = (ut − uxx) + k
(

1
2

utt − θutxx

)
− h2

12
uxxxx + O(k2, kh2, h4).

Since u is a solution of the PDE, this eliminates ut − uxx .
Also, differentiating the PDE once with respect to t gives

utt = utxx = uxxxx

and hence

LTE =

(
k
(

1
2
− θ

)
− h2

12

)
uxxxx + O(k2, kh2, h4).
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Therefore,

LTE =


O(k ,h2) for θ, k , h arbitrary ,
O(h2) for k = O(h2) ,

O(k2,h2) for θ = 1/2 ,

O(h4) for θ = 1
2 − 1

12r , r = k/h2, k = O(h2) ,

where the last property (4th order accurate) is a result of setting

k
(

1
2
− θ

)
− h2

12
= 0 ,

which can be achieved by the FTCS scheme for θ = 0, i.e., r = 1/6.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 6 14/ 15



Therefore,

LTE =


O(k ,h2) for θ, k , h arbitrary ,
O(h2) for k = O(h2) ,

O(k2,h2) for θ = 1/2 ,

O(h4) for θ = 1
2 − 1

12r , r = k/h2, k = O(h2) ,

where the last property (4th order accurate) is a result of setting

k
(

1
2
− θ

)
− h2

12
= 0 ,

which can be achieved by the FTCS scheme for θ = 0, i.e., r = 1/6.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 6 14/ 15



Therefore,

LTE =


O(k ,h2) for θ, k , h arbitrary ,
O(h2) for k = O(h2) ,

O(k2,h2) for θ = 1/2 ,

O(h4) for θ = 1
2 − 1

12r , r = k/h2, k = O(h2) ,

where the last property (4th order accurate) is a result of setting

k
(

1
2
− θ

)
− h2

12
= 0 ,

which can be achieved by the FTCS scheme for θ = 0, i.e., r = 1/6.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 6 14/ 15



Summary of learning targets

1. For which two numerical schemes can the θ-method be
considered as a weigthed generalisation?

2. How is the θ-method called for θ = 1/2?

3. Can you perform the LTE analysis for the θ-method and what is
the result of it?
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