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@ The BTCS scheme
@ Generalisation of the FTCS and BTCS schemes: The #-method

© LTE analysis of the 9-method
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Goal: Schemes with better stability properties (so-called 6-schemes)



The BTCS scheme

Goal: Schemes with better stability properties (so-called #-schemes)

Idea: Study BTCS schemes, i.e., work at the forward point (x;, t,1)
and use Backward Difference Approximation in time (B;/k) and again
Central Difference Approximation in space (62/h?),
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Goal: Schemes with better stability properties (so-called #-schemes)

Idea: Study BTCS schemes, i.e., work at the forward point (x;, t.1)
and use Backward Difference Approximation in time (B;/k) and again
Central Difference Approximation in space (62/h?),
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which reads for r := k/h? as the following implicit scheme

—wit (1 2nw T —mli = w forj=1,2,...,J-1.
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The BTCS scheme

Goal: Schemes with better stability properties (so-called #-schemes)

Idea: Study BTCS schemes, i.e., work at the forward point (x;, t.1)
and use Backward Difference Approximation in time (B;/k) and again
Central Difference Approximation in space (62/h?),
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which reads for r := k/h? as the following implicit scheme
—rvv].”j11 (1+2nw, wit rwjf'++11 =w/ forj=1,2,...,J-1.

(Implicit means: Solve a set of simultaneous equations for each time
level.)

HERIOT
AT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 6 3/ 15



Matrix form of the BTCS scheme

Sw™! = w" 4 b1
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Problem: For r = 0.4 and J = 4 solve

Ut = Uxx ,
u(0,t) =u(1,)=0, t>0  (BC)
u(x,0) = sin(xm), (IC).



Problem: For r = 0.4 and J = 4 solve

Ut = Uxx ,
u0,t) =u(1,t)=0, t>0  (BC)
u(x,0) = sin(xm), (IC).

Solution: The I.C.s tell us that
wo — [0,1/\/5,1,1/«20] :



Problem: For r = 0.4 and J = 4 solve

Ut = Uxx ,
u0,t) =u(1,t)=0, t>0  (BC)
u(x,0) = sin(xm), (IC).

Solution: The I.C.s tell us that
wo — [0,1/\/5,1,1/«20] :

At n = 1 the BCs tell us that w} = w/} = 0.
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Example
Problem: For r = 0.4 and J = 4 solve

Ut = Uxx ,
u(0,t)=u(1,t)=0, t>0 (BC)
u(x,0) = sin(xm), (I0).

Solution: The I.C.s tell us that
- [0,1/\@,1,1/\@,0}.

At n = 1 the BCs tell us that wj = w; = 0. Setting n = 0 in the BTCS
scheme gives (j = 1,2, 3)

(1+0.8)w — 0.4w] =w? + 0.4w]
—0.4w] +(1+0.8)w) — 0.4w] —ws
—0.4w] + (1 +0.8)wd =wj +0.4w;
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or
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1.8w] — 0.4w]
—0.4w] +1.8w) — 0.4w3

—0.4w] + 1.8W]
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=—+04x0
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or

’
1.8w] —0.4w] —+04x0
\@
—0.4w] +1.8w) — 0.4w3 =1
04w} + 1.8 \1@ 4040
or
1.8 04 0 wj 7
04 1.8 —04 wl | =] 1
0 -04 1.8 w] o
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or

1.8w] — 0.4w} =\1@ +04x0
— 04w +1.8w} — 0.4wj =1
—0.4w} +1.8wW] :\1@ +04x0
or
18 —04 0 w) 75
( -04 1.8 o.4> ( w) ) =1 1
0 -04 1.8 w] o

Solving this by Gauss elimination gives

w' =[0,0.5729,0.8102,0.5729, 0] .
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or

1
1.8w] —0.4w] =7 0.4 x0
—0.4w] +1.8w) — 0.4w3 =1
1
—0.4w; +1.8w) ——— 4+04x0
2 3 \/é
or
18 —04 0 w) 75
04 18 -04 wi | =] 1
1 1
0 04 18 w) -

Solving this by Gauss elimination gives
w' =[0,0.5729,0.8102,0.5729, 0] .
We now repeat this process to get w?, w3, etc. The exact result is

u' = exp(—7?k) sin(rx;) = [0,0.5525,0.7813,0.5525, 0] .
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Natural generalisation: The -method

Take a weigthed average of the FTCS and BTCS scheme

2 2

Ew-”:(1 9)5 w/ +95X 1, with 6 € (0,1),

k h2 h2

is called the 8-method for u; = uUyy.
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Natural generalisation: The -method

Take a weigthed average of the FTCS and BTCS scheme

2 2

62 5 :
?fwjn:u 9)h2w+ax 1 with 6 € (0,1),

h2
is called the 8-method for u; = uUyy.
Remark. The §-scheme is
1. the FTCS scheme for 8 = 0,
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Natural generalisation: The -method

Take a weigthed average of the FTCS and BTCS scheme

2 2

62 5 :
?fwjn:u 9)h2w+ax 1 with 6 € (0,1),

h2
is called the 8-method for u; = uUyy.
Remark. The 0-scheme is
1. the FTCS scheme for 8 = 0,
2. the BTCS scheme for 6 = 1,

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 6

7/ 15

HERIOT
AT




Natural generalisation: The -method

Take a weigthed average of the FTCS and BTCS scheme

2 2

62 5 :
?fwjn:u 9)h2w+ax 1 with 6 € (0,1),

h2
is called the 8-method for u; = uUyy.
Remark. The #-scheme is
1. the FTCS scheme for 6 = 0,
2. the BTCS scheme for 6 = 1,
3. implicit for any 6 > 0.
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Natural generalisation: The -method

Take a weigthed average of the FTCS and BTCS scheme
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is called the 8-method for u; = uUyy.
Remark. The #-scheme is
1. the FTCS scheme for § = 0,
2. the BTCS scheme for 6 = 1,
3. implicit for any 6 > 0.
For 6 € (0, 1) the computational molecule looks as follows
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Natural generalisation: The -method

Take a weigthed average of the FTCS and BTCS scheme

2 2
I;’Wj!”'—(1—9)izw +9f7’; + with 6 € (0,1),

is called the 0-method for u; = uyy.
Remark. The #-scheme is
1. the FTCS scheme for § = 0,
2. the BTCS scheme for 6 = 1,
3. implicit for any 6 > 0.
For 6 € (0, 1) the computational molecule looks as follows
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For 6 = 0.5 we get the so-called Crank-Nicolson scheme

Foon 102 . 162 ..
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The Crank-Nicolson method: 6 = 1/2

For 6 = 0.5 we get the so-called Crank-Nicolson scheme

Ft n 152 _‘_1§ n+1

KT e oY
Setting again r := k/h? and re-arranging terms leads to

r 1 1 r 1 r
—WE (1 WP = S = Sl (= W]+ gW
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The 6-scheme can be written as

2 2
LAWIP;—%W —(1—0)5 w/ —922w o)



LTE analysis of the -method

The 0-scheme can be written as

L n._Fl‘ n 1_ 062 9)2( +1_0
AW =W — )hzw “UReW =

LTE-procedure:
1. Plug in the exact solution u(x;, t,) instead of an (for all j, n) into

Lawy,
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LTE analysis of the #-method

The 0-scheme can be written as

L n._Fl‘ n 1 062 9)2( +1_0
aW; ‘_?Wf_( - )hZW T2 -

LTE-procedure:

1. Plug in the exact solution u(x;, t,) instead of an (for all j, n) into
LA W-n,
2. Taylor expand about (x, t) = (x;, tn),
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LTE analysis of the #-method

The 0-scheme can be written as

L n._Fl‘ n 1 062 9)2( +1_0
aW; ‘_?Wf_( - )hZW T2 -

LTE-procedure:
1. Plug in the exact solution u(x;, t,) instead of an (for all j, n) into
LA W-n,
2. Taylor expand about (x, t) = (x;, tn),
3. Eliminate terms using the PDE.
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LTE analysis of the #-method

The 0-scheme can be written as

F 52 52
Law = ?twj-”—(1 —9)h2W —Hh’; 1 — .

LTE-procedure:

1. Plug in the exact solution u(x;, t,) instead of an (for all j, n) into
LA W-n,

2. Taylor expand about (x, t) = (X, tn),
3. Eliminate terms using the PDE.

Remember, do not multiply or divide L an by k or h when
working out the LTE.

HERIOT
AT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 6 10/ 15



We make Taylor series of smooth enough functions u(x, t), i.e.,

Fiu(xj, tn) = u(X;, th+k) — u(xj, tn)

kg + k2 82 + Eis
3! 013

Lo + 0K ut. )

k? k3
= [k Us + Uy + Um:| + O(k4).
2! 3!
(vatn)
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We make Taylor series of smooth enough functions u(x, t), i.e.,

Fru(xj,ta) = u(Xj, th+K) — u(xj, tn)
0 k29 K393 4
k2 K3
= [k Ut + Ut + — Unt

+ O(k*).
2! 3! LW)

Expanding the 2nd central space difference term 62u(x;, t,) gives

S2u(xj, th) = u(xXj+h,ty) — 2u(X;, tn) + u(x;—h, tn)
o 2h* o
2 6 ,
[h 2 + TG + O(h )] u(x;, tn)

h*
= [hz Uxx + 12Uxxxx:| + o(h6)-
(X/'vtn)
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The similar term 62u(x;, t,11) (time level n + 1) becomes

S2u(Xj, tatK) = U(Xj+h, th+k) — 2u(X}, ta+K) + U(X;— h, tr+k)
h4
e h2 UXX + EUXXXX + O(hs)
(X, trth)
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The similar term 62u(x;, t,11) (time level n + 1) becomes

S2u(Xj, tatK) = U(Xj+h, th+k) — 2u(X}, ta+K) + U(X;— h, tr+k)
h4
e h2 UXX + EUXXXX + O(hs)
(X, trth)

Note that this term is evaluated at time t = t, + k and so it must also
be expanded in k.
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The similar term 62u(x;, t,11) (time level n + 1) becomes

S2u(Xj, tatK) = U(Xj+h, th+k) — 2u(X}, ta+K) + U(X;— h, tr+k)
h4
e |:h2 UXX + EUXXXX + O(hs):|
(X trtk)

Note that this term is evaluated at time t = t, + k and so it must also
be expanded in k. That is

h?
5)2(U(Xja Iht+k) = [hz Uxx + ﬁuxxxx + O(he)}
(X, trtk)

ot T 2102

o k2 5?
_[1+k 12

h4
—|— ‘e :| |:h2 UXX + 7UXXXX + O(hG):|
(vat")

4
= [h2 Usx + Kh? Uyt + h—uxxxx + O(kh*, K2h?, KP).

12 :| (vatn)
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We now substitute each of the three terms into La W/.” and collect terms
of the same order to get

2

1 h
LTE = (Ut — Uxx) + Kk <2Un = Outxx) — ﬁuxxxx + O(kz, khz, h4).
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We now substitute each of the three terms into La W/-n and collect terms
of the same order to get

2

1 h
LTE = (Ut — Uxx) + Kk <2Un = Outxx) — ﬁuxxxx + O(kz, khz, h4).

Since u is a solution of the PDE, this eliminates u; — uyy.
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We now substitute each of the three terms into La an and collect terms
of the same order to get

1 H
LTE = (Ut — Uxx) + Kk <2Un = HUtxx) — ﬁuxxxx + O(kz, khz, h4).

Since u is a solution of the PDE, this eliminates u; — uyy.
Also, differentiating the PDE once with respect to t gives

Ut = Utxx = Uxxxx
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We now substitute each of the three terms into La an and collect terms
of the same order to get

1 H
LTE = (Ut — Uxx) + Kk <2Un = HUtxx) — ﬁuxxxx + O(kz, khz, h4).

Since u is a solution of the PDE, this eliminates u; — uyy.
Also, differentiating the PDE once with respect to t gives

Ut = Utxx = Uxxxx

and hence

2
LTE = (k (; — 0> — ?2) Usox + O(K?, kh?, h*).
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Therefore,

(k,h?)  for @, k, h arbitrary ,
(h7) for k = O(h?),
O(k?, h?) forf=1/2,
(h*) for@z%—%,r:k/hz,k:(’)(hz),

LTE =
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Therefore,

(k,h?)  for @, k, h arbitrary ,
(h?) for k = O(h?),

O(k?, h?) forf=1/2,
(h*) ford =% — 53, r = k/h?, k= O(h?),

LTE =

where the last property (4th order accurate) is a result of setting

1 h?
(3-0)-% o,
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Therefore,

(k,h?)  for @, k, h arbitrary ,
(h?) for k = O(h?),

O(k?, h?) forf=1/2,
(h*) ford =% — 53, r = k/h?, k= O(h?),

ICINE =
where the last property (4th order accurate) is a result of setting

1 h?
(3-0)-% o,

which can be achieved by the FTCS scheme for 6 = 0, i.e., r = 1/6.
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Summary of learning targets

1. For which two numerical schemes can the #-method be
considered as a weigthed generalisation?
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Summary of learning targets
1. For which two numerical schemes can the §-method be

considered as a weigthed generalisation?

2. How is the #-method called for § = 1/27
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Summary of learning targets

1. For which two numerical schemes can the #-method be
considered as a weigthed generalisation?

2. How is the #-method called for § = 1/27

3. Can you perform the LTE analysis for the #-method and what is
the result of it?

HERIOT
AT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 6 15/ 15



	The BTCS scheme
	Generalisation of the FTCS and BTCS schemes: The -method
	LTE analysis of the -method

