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von Neumann analysis

For r = k/h2, the θ-method reads

−θrwn+1
m−1 + (1 + 2θr)wn+1

m − θrwn+1
m+1

= (1 − θ)rwn
m−1 + (1 − 2(1 − θ)r)wn

m + (1 − θ)rwn
m+1 .

Then, substitute wn
m = ξneimω and simplify

− θrei(m−1)ωξn+1 + (1 + 2θr)eimωξn+1 − θrei(m+1)ωξn+1 =

(1 − θ)rei(m−1)ωξn + (1 − 2(1 − θ)r)eimωξn + (1 − θ)rei(m+1)ωξn

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 3/ 13



von Neumann analysis

For r = k/h2, the θ-method reads

−θrwn+1
m−1 + (1 + 2θr)wn+1

m − θrwn+1
m+1

= (1 − θ)rwn
m−1 + (1 − 2(1 − θ)r)wn

m + (1 − θ)rwn
m+1 .

Then, substitute wn
m = ξneimω and simplify

− θrei(m−1)ωξn+1 + (1 + 2θr)eimωξn+1 − θrei(m+1)ωξn+1 =

(1 − θ)rei(m−1)ωξn + (1 − 2(1 − θ)r)eimωξn + (1 − θ)rei(m+1)ωξn

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 3/ 13



von Neumann analysis

For r = k/h2, the θ-method reads

−θrwn+1
m−1 + (1 + 2θr)wn+1

m − θrwn+1
m+1

= (1 − θ)rwn
m−1 + (1 − 2(1 − θ)r)wn

m + (1 − θ)rwn
m+1 .

Then, substitute wn
m = ξneimω and simplify

− θrei(m−1)ωξn+1 + (1 + 2θr)eimωξn+1 − θrei(m+1)ωξn+1 =

(1 − θ)rei(m−1)ωξn + (1 − 2(1 − θ)r)eimωξn + (1 − θ)rei(m+1)ωξn

⇒ −θre−iωξ + (1 + 2θr)ξ − θreiωξ

= (1 − θ)re−iω + (1 − 2(1 − θ)r) + (1 − θ)reiω

(taking out factors eimω and ξn)

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 4/ 13



von Neumann analysis

For r = k/h2, the θ-method reads

−θrwn+1
m−1 + (1 + 2θr)wn+1

m − θrwn+1
m+1

= (1 − θ)rwn
m−1 + (1 − 2(1 − θ)r)wn

m + (1 − θ)rwn
m+1 .

Then, substitute wn
m = ξneimω and simplify

− θrei(m−1)ωξn+1 + (1 + 2θr)eimωξn+1 − θrei(m+1)ωξn+1 =

(1 − θ)rei(m−1)ωξn + (1 − 2(1 − θ)r)eimωξn + (1 − θ)rei(m+1)ωξn
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= (1 − θ)re−iω + (1 − 2(1 − θ)r) + (1 − θ)reiω

(taking out factors eimω and ξn)
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Using

eiω − 2 + e−iω = −2(1 − cos(ω)) = −4 sin2(ω/2)

in the above equation gives

ξ + 4ξθ sin2(ω/2)r = 1 − 4(1 − θ)r sin2(ω/2)
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in the above equation gives
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⇒ ξ =
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We need |ξ| ≤ 1 for stability for all ω ∈ [−π, π]. Since ξ is clearly real in
this case this means we require −1 ≤ ξ ≤ 1. Now
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= 1 − 4r sin2(ω/2)
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It leaves to consider the case ξ ≥ −1. This is (on multiplying through
by the denominator)

−1 − 4θr sin2(ω/2) ≤ 1 − 4(1 − θ)r sin2(ω/2)

⇒ 2(1 − 2θ)r sin2(ω/2) ≤ 1

(i) If θ ≥ 1/2, this last inequality will clearly hold for all r .
(ii) If θ < 1/2, we need in the worst case (ω = π) that

r ≤ 1
2(1 − 2θ)

.

for stability.

Remark. If θ = 0, we recover the familiar r ≤ 1/2 result for the FTCS
scheme.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 8/ 13



It leaves to consider the case ξ ≥ −1. This is (on multiplying through
by the denominator)

−1 − 4θr sin2(ω/2) ≤ 1 − 4(1 − θ)r sin2(ω/2)

⇒ 2(1 − 2θ)r sin2(ω/2) ≤ 1

(i) If θ ≥ 1/2, this last inequality will clearly hold for all r .
(ii) If θ < 1/2, we need in the worst case (ω = π) that

r ≤ 1
2(1 − 2θ)

.

for stability.

Remark. If θ = 0, we recover the familiar r ≤ 1/2 result for the FTCS
scheme.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 8/ 13



It leaves to consider the case ξ ≥ −1. This is (on multiplying through
by the denominator)

−1 − 4θr sin2(ω/2) ≤ 1 − 4(1 − θ)r sin2(ω/2)

⇒ 2(1 − 2θ)r sin2(ω/2) ≤ 1

(i) If θ ≥ 1/2, this last inequality will clearly hold for all r .
(ii) If θ < 1/2, we need in the worst case (ω = π) that

r ≤ 1
2(1 − 2θ)

.

for stability.

Remark. If θ = 0, we recover the familiar r ≤ 1/2 result for the FTCS
scheme.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 8/ 13



It leaves to consider the case ξ ≥ −1. This is (on multiplying through
by the denominator)

−1 − 4θr sin2(ω/2) ≤ 1 − 4(1 − θ)r sin2(ω/2)

⇒ 2(1 − 2θ)r sin2(ω/2) ≤ 1

(i) If θ ≥ 1/2, this last inequality will clearly hold for all r .
(ii) If θ < 1/2, we need in the worst case (ω = π) that

r ≤ 1
2(1 − 2θ)

.

for stability.

Remark. If θ = 0, we recover the familiar r ≤ 1/2 result for the FTCS
scheme.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 8/ 13



It leaves to consider the case ξ ≥ −1. This is (on multiplying through
by the denominator)

−1 − 4θr sin2(ω/2) ≤ 1 − 4(1 − θ)r sin2(ω/2)

⇒ 2(1 − 2θ)r sin2(ω/2) ≤ 1

(i) If θ ≥ 1/2, this last inequality will clearly hold for all r .
(ii) If θ < 1/2, we need in the worst case (ω = π) that

r ≤ 1
2(1 − 2θ)

.

for stability.

Remark. If θ = 0, we recover the familiar r ≤ 1/2 result for the FTCS
scheme.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 8/ 13



Stability result for the θ-scheme

Summary: The θ-scheme is stable

(i) for all r , if θ ≥ 1/2,

(ii) for

r ≤ 1
2(1 − 2θ)

, if θ < 1/2.
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Matrix form of the θ-method

We can write the θ-method in much the same form as the BTCS
scheme,

Swn+1 = Mwn + (1 − θ)bn + θbn+1

where

S =


1 + 2θr −θr 0 . . .
−θr 1 + 2θr −θr 0 . . .

0 −θr 1 + 2θr −θr 0
. . . . . . . . . . . . . . .

. . . 0 −θr 1 + 2θr

 ,

wn =


wn

1
wn

2
...
...

wn
J−1

 , bn =


rα(tn)

0
...
0

rβ(tn)

 ,
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M =



1 − 2(1 − θ)r (1 − θ)r 0 . . .
(1 − θ)r 1 − 2(1 − θ)r (1 − θ)r 0 . . .

0 (1 − θ)r 1 − 2(1 − θ)r (1 − θ)r 0
. . .

. . .
. . .

. . .
. . .

. . . 0 (1 − θ)r 1 − 2(1 − θ)r

 ,

with corresponding definitions for wn+1 and bn+1. So supposing we
know wn, then wn+1 is computed by

(i) Set q = Mwn + (1 − θ)bn + θbn+1.
(ii) Solve Sv = q for v.
(iii) Set wn+1 = v

The matrix S is tridiagonal (if θ > 0), so solving (ii) is fairly quick and
easy. This is still more work than solving the explicit FTCS scheme
(θ = 0) but not much more.
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Summary about the θ-method

Scheme Order Type Stability
θ = 0 O(k ,h2) explicit r ≤ 1/2
0 < θ < 1/2 O(k ,h2) implicit r ≤ 1/2(1 − 2θ)
θ = 1/2 O(k2,h2) implicit stable for all r
1/2 < θ ≤ 1 O(k ,h2) implicit stable for all r

(Note the accuracy of some schemes can be increased by choosing a special value
for r ).

Remark. 1. FTCS scheme easy to apply (because it is explicit), but
the time step constraint for stability requires k ≤ 1/2h2, such that for h
small, we have k very small.
2. The θ-method for θ > 1/2 allows a larger time step for stability (but
not too large, otherwise the LTE gets big), and hence can require less
overall computing.
3. The Crank-Nicolson scheme (θ = 1/2) has the added advantage of
a higher order LTE.
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Summary of learning targets:

1. Can you apply the von Neumann stability to the θ-method?

2. What is the result of 1. and can you summerise the properties of
the θ-method?

3. After comparing the θ-method with the FTCS scheme or the
Crank-Nicolson scheme with respect to computational costs,
which scheme would you recommend at the end?
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