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@ stavility of the 6-method

e Matrix form of the #-method
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For r = k/h?, the -method reads

—Orwity + (1 +20r)wit' — 0wt

= (1= 0w +(1—2(1 — )W+ (1 —0)w], .



von Neumann analysis

For r = k/h?, the #-method reads

—0rw T + (1 +20r)witt — orwity

=1 -0)mwy_1+(1—2(1-0)r)wp+ (1 —0)rwy, 4.

Then, substitute w/! = ¢"e™ and simplify

o Grei(m—1)w§n+1 + (1 + 29r)eimw§n+1 o erei(m+1)w€n+1 _
(1 _ e)re/(m—ﬂwgn + (1 _ 2(1 _ e)r)eimwgn 4 (1 . Q)rei(m—H)wgn
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von Neumann analysis

For r = k/h?, the #-method reads

—0rw T + (1 +20r)witt — orwty

=(1-0)mwj_1+(1—-2(1-0)r)wy+ (1 —0)rwy, 4.

Then, substitute w/l = ¢"e™ and simplify

o erei(m—1)w€n+1 + (1 + 20r)eimw€n+1 _ Hrei(m+1)w€n+1 _

(1= 0)re/ (Mg 4 (1 - 2(1 — 0)r)e™e" 4 (1 — )re/ (™ 1wg”
= —0re "¢ + (1 + 20r)¢ — Ore'¢

=(1-0)re™ +(1-2(1-6)r)+ (1 —6)re"

(taking out factors €™ and ¢")
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von Neumann analysis

For r = k/H?, the f-method reads

—0rw)t + (1 4+ 20r)wit — 0wy

-] ,+(1-21-0)rwj+(1 - ¢9)rw,’]7+1 )

Then, substitute w/? = ¢"e™ and simplify

— gre/(m=Dwent1 4 (1 4 20r)e™ e+ — gre/(mtwentt —
(1 —0)re/Mm=1wen 4 (1 —2(1 — 0)r)e™¢" + (1 — §)re/(M+wen
= —0re""¢ 4+ (1 + 20r)¢ — fre'¢
=(1—0)re”™+(1—-2(1-0)r)+(1—0)re"
(taking out factors €™ and ¢")
=¢—r(e” —2+e ™)y =14+(1—-0)r(e” —2+ e )

HERIOT

FwW

U

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 5/13




Using

e — 2+ e =_2(1 —cos(w)) = —4sin?(w/2)

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 6/13



Using

v -2+ e =_2(1 - cos(w)) = —4sin’(w/2)
in the above equation gives

€ +4¢0sin®(w/2)r =1 —4(1 — 0)rsin®(w/2)
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Using . '
¥ —2+e ™ =_2(1 - cos(w)) = —4sin?(w/2)

in the above equation gives
£+ 4£0sin®(w/2)r =1 — 4(1 — O)rsin®(w/2)

1 —4(1 - 0)rsin®(w/2)
T 1+ 40rsin®(w/2)
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Using
v -2+ e =_2(1-cos(w)) = —4sin?(w/2)

in the above equation gives
£+ 4£0sin®(w/2)r =1 — 4(1 — O)rsin®(w/2)

1 —4(1 - 0)rsin®(w/2)
T 1+ 40rsin®(w/2)

=&

We need |¢| < 1 for stability for all w € [—m, 7].
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Using
v -2+ e =_2(1-cos(w)) = —4sin?(w/2)

in the above equation gives
£+ 4£0sin®(w/2)r =1 — 4(1 — O)rsin®(w/2)

1 —4(1 - 0)rsin®(w/2)
T 1+ 40rsin®(w/2)

=&

We need [£| < 1 for stability for all w € [—7, 7]. Since ¢ is clearly real in
this case this means we require —1 < £ < 1.
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Using
v -2+ e =_2(1-cos(w)) = —4sin?(w/2)

in the above equation gives
£+ 4£0sin®(w/2)r =1 — 4(1 — O)rsin®(w/2)

1 —4(1 - 0)rsin®(w/2)
T 1+ 40rsin®(w/2)

=&

We need [£| < 1 for stability for all w € [—7, 7]. Since ¢ is clearly real in
this case this means we require —1 < £ < 1. Now

_ 1 +40r sin?(w/2) — 4rsin?(w/2) : 4rsin?(w/2)

1+ 40rsin®(w/2) 1+ 40rsin?(w/2)

£

so ¢ < 1 is satisfied.
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It leaves to consider the case £ > —1.

HERIOT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 8/13



It leaves to consider the case £ > —1. This is (on multiplying through
by the denominator)

—1 —40rsin®(w/2) <1 —4(1 — 0)rsin®(w/2)
= 2(1 — 20)rsin®(w/2) < 1
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It leaves to consider the case £ > —1. This is (on multiplying through
by the denominator)

—1 —40rsin®(w/2) <1 —4(1 — 0)rsin®(w/2)
= 2(1 — 20)rsin®(w/2) < 1

(i) 1If 0 > 1/2, this last inequality will clearly hold for all r.
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It leaves to consider the case £ > —1. This is (on multiplying through
by the denominator)

—1 —40rsin®(w/2) <1 —4(1 — 0)rsin®(w/2)
= 2(1 — 20)rsin®(w/2) < 1

(i) 1If 0 > 1/2, this last inequality will clearly hold for all r.
(i) If & < 1/2, we need in the worst case (w = ) that

1
< —
"= 3029

for stability.

HERIOT
AR
M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 7 8/13



It leaves to consider the case £ > —1. This is (on multiplying through
by the denominator)

—1 —40rsin®(w/2) <1 —4(1 — 0)rsin®(w/2)
= 2(1 — 20)rsin®(w/2) < 1

(i) 1If 0 > 1/2, this last inequality will clearly hold for all r.
(i) If & < 1/2, we need in the worst case (w = ) that

1
< —
"= 3029

for stability.

Remark. If § = 0, we recover the familiar r < 1/2 result for the FTCS
scheme.
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Summary: The 6-scheme is stable

(i) forallr,if6>1/2,



Summary: The 6-scheme is stable

(i) forallr,if6>1/2,

(ii) for

1 .
< — .
r< sz 19<1/2
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Matrix form of the #-method

We can write the 8-method in much the same form as the BTCS
scheme,
Sw = Mw" + (1 — 0)b" + gb™ !

where
14 260r —0r 0 ..
—0Or 1+ 20r —0r 0 o
S— 0 —60r 1+4+20r —0r 0
0 —0r 1+ 20r
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Matrix form of the #-method

We can write the 8-method in much the same form as the BTCS
scheme,
Sw = Mw" + (1 — 0)b" + gb™ !

where

1+ 20r —0r 0

—0r 1+ 20r —0r 0

S— 0 —0r 1+20r —0Or 0

0 —O0r 1+ 20r
wy ro(ty)
wy 0
w’ = g b" = :
: 0
W5L1 r ﬁ (tn) HERIOT
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1-20-0)r (1-0)r 0 ..
A-0r 1-201-0r (1-0)r 0 .
0 A=0r 1-201—-0)r (1-0)r 0

0 (1—=6)r 1—-2(1-0)r
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1—-2(1-0)r (1-=0)r 0
(1-=0)r 1—-2(1-0)r (1-=0)r 0
0 (1=0)r 1-2(1-0)r (1-0)r 0
0 A—6)r 1-2(1-0)r

with corresponding definitions for w™+! and b"+".
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1—-2(1-0)r (1-=0)r 0
(1-=0)r 1—-2(1-0)r (1-=0)r 0
0 (1=0)r 1-2(1-0)r (1-0)r 0
0 A—6)r 1-2(1-0)r

with corresponding definitions for w”*' and b™*'. So supposing we
know w”, then w"* is computed by

(i) Setq = Mw"+ (1 —0)b" + ob"+1.
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1-2(1-0)r (1-0)r 0
(1-=0)r 1—-2(1-0)r (1-=0)r 0
0 (1-0)r 1-2(1—-0)r (1-06)r 0

0 (1—=6)r 1—-2(1-0)r

with corresponding definitions for w”*' and b™*'. So supposing we
know w”, then w"* is computed by

(i) Setq = Mw"+ (1 —0)b" + ob"+1.
(i) Solve Sv = q for v.
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1-2(1-0)r (1-0)r 0
(1-=0)r 1—-2(1-0)r (1-=0)r 0
0 (1-0)r 1-2(1—-0)r (1-06)r 0

0 (1—=6)r 1—-2(1-0)r

with corresponding definitions for w”*' and b™*'. So supposing we
know w”, then w"* is computed by

(i) Setq = Mw"+ (1 —0)b" + ob"+1.
(i) Solve Sv = q for v.
(i) Setw™! =v
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1-2(1-0)r (1-0)r 0
(1-=0)r 1—-2(1-0)r (1-=0)r 0
0 (1-0)r 1-2(1—-0)r (1-06)r 0

0 (1—=6)r 1—-2(1-0)r

with corresponding definitions for w”*' and b™*'. So supposing we
know w”, then w"* is computed by

(i) Setq = Mw"+ (1 —0)b" + ob"+1.
(i) Solve Sv = q for v.
(i) Setw™! =v

The matrix S is tridiagonal (if & > 0), so solving (ii) is fairly quick and
easy.
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1-2(1-0)r (1-0)r 0
(1-=0)r 1—-2(1-0)r (1-=0)r 0
0 (1-0)r 1-2(1—-0)r (1-06)r 0

0 (1—=6)r 1—-2(1-0)r

with corresponding definitions for w"*' and b™*'. So supposing we
know w”, then w"* is computed by

(i) Setq = Mw"+ (1 —0)b" + ob"+1.
(i) Solve Sv = q for v.
(i) Setw™! =v

The matrix S is tridiagonal (if & > 0), so solving (ii) is fairly quick and
easy. This is still more work than solving the explicit FTCS scheme
(¢ = 0) but not much more.
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Summary about the 8-method

Scheme Order Type Stability

=0 O(k, P?) | explicit | r <1/2
0<6<1/2| O(k,h?) | implicit | r <1/2(1 —26)
6=1/2 O(k?, h?) | implicit | stable for all r
1/2 <60 <1 | O(k,?) | implicit | stable for all r

(Note the accuracy of some schemes can be increased by choosing a special value
for r).
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Summary about the 8-method

Scheme Order Type Stability

=0 O(k, P?) | explicit | r <1/2
0<6<1/2| O(k,h?) | implicit | r <1/2(1 —26)
6=1/2 O(k?, h?) | implicit | stable for all r
1/2 <60 <1 | O(k,?) | implicit | stable for all r

(Note the accuracy of some schemes can be increased by choosing a special value
for r).

Remark. 1. FTCS scheme easy to apply (because it is explicit), but
the time step constraint for stability requires k < 1/2h?, such that for h
small, we have k very small.
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Summary about the 8-method

Scheme Order Type Stability

=0 O(k, P?) | explicit | r <1/2
0<6<1/2| O(k,h?) | implicit | r <1/2(1 —26)
6=1/2 O(k?, h?) | implicit | stable for all r
1/2 <60 <1 | O(k,?) | implicit | stable for all r

(Note the accuracy of some schemes can be increased by choosing a special value
for r).

Remark. 1. FTCS scheme easy to apply (because it is explicit), but
the time step constraint for stability requires k < 1/2h?, such that for h
small, we have k very small.

2. The 6-method for 6 > 1/2 allows a larger time step for stability (but
not too large, otherwise the LTE gets big), and hence can require less
overall computing.
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Summary about the §-method

Scheme Order Type Stability

=0 O(k, P?) | explicit | r <1/2
0<6<1/2| O(k,h?) | implicit | r <1/2(1 —26)
6=1/2 O(k?, h?) | implicit | stable for all r
1/2 <60 <1 | O(k,?) | implicit | stable for all r

(Note the accuracy of some schemes can be increased by choosing a special value
for r).

Remark. 1. FTCS scheme easy to apply (because it is explicit), but
the time step constraint for stability requires k < 1/2h?, such that for h
small, we have k very small.

2. The 6-method for 6 > 1/2 allows a larger time step for stability (but
not too large, otherwise the LTE gets big), and hence can require less
overall computing.

3. The Crank-Nicolson scheme (0 = 1/2) has the added advantage of
a higher order LTE.
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1. Can you apply the von Neumann stability to the #-method?



Summary of learning targets:

1. Can you apply the von Neumann stability to the #-method?

2. What is the result of 1. and can you summerise the properties of
the #-method?
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Summary of learning targets:

1. Can you apply the von Neumann stability to the #-method?

2. What is the result of 1. and can you summerise the properties of
the #-method?

3. After comparing the 6-method with the FTCS scheme or the
Crank-Nicolson scheme with respect to computational costs,
which scheme would you recommend at the end?
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