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Multilevel Schemes: 1. The Richardson scheme

Multilevel schemes: are numerical schemes that involve more than 2
time levels. We consider subsequently only the heat equation.

1. The Richardson scheme: approximates ut by the Central
Difference operator Dt

k u(xj , tn) such that with the usual δ
2
x

h2 in space we
get

Dt

k
wn

j :=
wn+1

j − wn−1
j

2k
=
δ2

x
h2 wn

j =:
wn

j−1 − 2wn
j + wn

j+1

h2 ,

which gives the Richardson scheme

wn+1
j = wn−1

j + 2r(wn
j−1 − 2wn

j + wn
j+1), n ≥ 1, j = 1, . . . , J − 1 .
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Stability of the Richardson scheme

Claim: The Richardson scheme is unstable for all r .
Proof: Inserting wn

j = ξneiωj into the scheme gives

ξ2 + 8r sin2
(

1
2
ω

)
ξ − 1 = 0 .

Stability requires |ξ1| , |ξ2| ≤ 1. Note that

(ξ − ξ1)(ξ − ξ2) = ξ2 + bξ + c

and hence
b = −(ξ1 + ξ2), c = ξ1ξ2 .

Since |c| = 1 = a and |b| 6= 2, we must have |ξ1| |ξ2| = 1 and either
(i) both ξi complex (Not the case since: (ξ + i)2 = ξ2 + 2iξ − 1 and
b = 8r sin2(ω/2) is not complex), or
(ii) both real and distinct with |ξi | < 1 and the other > 1.
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Solving the quadratic gives

ξ1,2 = ξ± = −4r sin2 ω

2
±
√

1 + 16r2 sin4 ω

2
,

then if both roots are real, one will have |ξ| > 1. In fact

ξ− = −p −
√

1 + p2, p = 4r sin2 ω

2
≥ 0

so clearly |ξ−| > 1 when p > 0, and hence the Richardson sheme is
unstable for all r .

Note: The Richardson scheme becomes useful after a slight
modification as we will see subsequently.
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The Du Fort-Frankel scheme

Replace in the Richardson method the term wn
j by the average

(wn+1
j + wn−1

j )/2, then we obtain the Du Fort-Frankel scheme

Lk ,hwn
j :=

wn+1
j − wn−1

j

2k
−

(
wn

j−1 − wn−1
j − wn+1

j + wn
j+1

h2

)

which for r := k/h2 after re-arranging reads as follows

wn+1
j =

1− 2r
1 + 2r

wn−1
j +

2r
1 + 2r

(
wn

j−1 + wn
j+1

)
, (DFS)

Remark. This scheme is explicit but needs to be provided with w1 by a
different scheme.
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Exercise: Show that the LTE of the Du Fort-Frankel scheme is

LTE =

(
r2 − 1

12

)
utt h2 +

k2

6
uttt + O(k4,h4, r4h6)

i.e. it is second order in time and space.

Claim: The Du Fort-Frankel scheme is unconditionally stable for all
r > 0.
Proof: By the von Neumann stability method one can easily show
(Exercise) that the Du Fort-Frankel scheme leads to the following
quadratic equation for the amplification factor

(1 + 2r)ξ2 − 4rξ cosω + 2r − 1 = 0,

whose roots are

ξ± =
2r cosω ±

√
1− 4r2 sin2 ω

1 + 2r
.
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We discuss now two different cases w.r.t. the discriminant:
(i) 4r2 sin2 ω ≤ 1, so both roots are real. It follows that

ξ+ =
2r cosω +

√
1− 4r2 sin2 ω

1 + 2r
≤ 2r cosω + 1

1 + 2r
≤ 1,

since cosω ≤ 1 for all ω, and moreover (since cosω ≥ −1 for all ω)

ξ+ ≥
−2r +

√
1− 4r2 sin2 ω

1 + 2r
≥ −2r

1 + 2r
> −1,

i.e. −1 < ξ+ ≤ 1. Similarly, it holds that −1 ≤ ξ− < 1, so in this
case both roots satisfy |ξ| ≤ 1.

(ii) 4r2 sin2 ω > 1, so both roots of the quadratic are complex, i.e.
ξ± = α± iβ, where

α =
2r cosω
1 + 2r

, β =

√
4r2 sin2 ω − 1

1 + 2r
.

This means that |ξ+| = |ξ−|.
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But the product of the two roots is (2r − 1)/(1 + 2r) and so both
roots must satisfy

|ξ|2 =
|2r − 1|
1 + 2r

≤ 1

for all r > 0, and so |ξ| ≤ 1 for any r .

This proves the claim. �

Comparison of methods:

Scheme Comments Stability LTE
Du Fort-Frankel explicit, but different

scheme required for
~w1

∀ r O(r 2h2, h2, k2). Second or-
der if k = O(h2), fourth order
if k = h2/

√
12

Crank-Nicolson
(θ = 1/2)

implicit: need to solve
a tridiagonal system
(not too bad)

∀ r O(h2, k2). Second order in
space and time separately

FTCS (θ = 0) explicit ∀r ≤ 1/2 O(h2, k). Second order if
k = O(h2), fourth order if
k = h2/6
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Convergence

Basic idea: For a difference operator Lk ,h that approximates
L = ∂

∂t −
∂2

∂x2 and for numerical and exact solutions wn
j and u,

respectively, i.e., solutions of Lk ,hwn
j = 0 and Lu = 0, respectively, we

say that a numerical scheme Lk ,h converges if wn
j → u for h, k → 0.

Pointwise convergence: Fix x∗ ∈ (0,1) and t∗ > 0. We are interested
in h, k → 0 for x∗ = jh and t∗ = nk fixed. Hence, we can write
wn

j = w t∗/k
x∗/h.

Definition. The approximate solution wn
j converges to the exact

solution u at (x∗, t∗) if ∣∣∣u(x∗, t∗)− w t∗/k
x∗/h

∣∣∣→ 0

as h, k → 0.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 10/ 14



Convergence

Basic idea: For a difference operator Lk ,h that approximates
L = ∂

∂t −
∂2

∂x2 and for numerical and exact solutions wn
j and u,

respectively, i.e., solutions of Lk ,hwn
j = 0 and Lu = 0, respectively, we

say that a numerical scheme Lk ,h converges if wn
j → u for h, k → 0.

Pointwise convergence: Fix x∗ ∈ (0,1) and t∗ > 0. We are interested
in h, k → 0 for x∗ = jh and t∗ = nk fixed. Hence, we can write
wn

j = w t∗/k
x∗/h.

Definition. The approximate solution wn
j converges to the exact

solution u at (x∗, t∗) if ∣∣∣u(x∗, t∗)− w t∗/k
x∗/h

∣∣∣→ 0

as h, k → 0.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 10/ 14



Convergence

Basic idea: For a difference operator Lk ,h that approximates
L = ∂

∂t −
∂2

∂x2 and for numerical and exact solutions wn
j and u,

respectively, i.e., solutions of Lk ,hwn
j = 0 and Lu = 0, respectively, we

say that a numerical scheme Lk ,h converges if wn
j → u for h, k → 0.

Pointwise convergence: Fix x∗ ∈ (0,1) and t∗ > 0. We are interested
in h, k → 0 for x∗ = jh and t∗ = nk fixed. Hence, we can write
wn

j = w t∗/k
x∗/h.

Definition. The approximate solution wn
j converges to the exact

solution u at (x∗, t∗) if ∣∣∣u(x∗, t∗)− w t∗/k
x∗/h

∣∣∣→ 0

as h, k → 0.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 10/ 14



Convergence

Basic idea: For a difference operator Lk ,h that approximates
L = ∂

∂t −
∂2

∂x2 and for numerical and exact solutions wn
j and u,

respectively, i.e., solutions of Lk ,hwn
j = 0 and Lu = 0, respectively, we

say that a numerical scheme Lk ,h converges if wn
j → u for h, k → 0.

Pointwise convergence: Fix x∗ ∈ (0,1) and t∗ > 0. We are interested
in h, k → 0 for x∗ = jh and t∗ = nk fixed. Hence, we can write
wn

j = w t∗/k
x∗/h.

Definition. The approximate solution wn
j converges to the exact

solution u at (x∗, t∗) if ∣∣∣u(x∗, t∗)− w t∗/k
x∗/h

∣∣∣→ 0

as h, k → 0.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 10/ 14



Convergence

Basic idea: For a difference operator Lk ,h that approximates
L = ∂

∂t −
∂2

∂x2 and for numerical and exact solutions wn
j and u,

respectively, i.e., solutions of Lk ,hwn
j = 0 and Lu = 0, respectively, we

say that a numerical scheme Lk ,h converges if wn
j → u for h, k → 0.

Pointwise convergence: Fix x∗ ∈ (0,1) and t∗ > 0. We are interested
in h, k → 0 for x∗ = jh and t∗ = nk fixed. Hence, we can write
wn

j = w t∗/k
x∗/h.

Definition. The approximate solution wn
j converges to the exact

solution u at (x∗, t∗) if ∣∣∣u(x∗, t∗)− w t∗/k
x∗/h

∣∣∣→ 0

as h, k → 0.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 10/ 14



Convergence

Basic idea: For a difference operator Lk ,h that approximates
L = ∂

∂t −
∂2

∂x2 and for numerical and exact solutions wn
j and u,

respectively, i.e., solutions of Lk ,hwn
j = 0 and Lu = 0, respectively, we

say that a numerical scheme Lk ,h converges if wn
j → u for h, k → 0.

Pointwise convergence: Fix x∗ ∈ (0,1) and t∗ > 0. We are interested
in h, k → 0 for x∗ = jh and t∗ = nk fixed. Hence, we can write
wn

j = w t∗/k
x∗/h.

Definition. The approximate solution wn
j converges to the exact

solution u at (x∗, t∗) if ∣∣∣u(x∗, t∗)− w t∗/k
x∗/h

∣∣∣→ 0

as h, k → 0.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 10/ 14



Convergence

Basic idea: For a difference operator Lk ,h that approximates
L = ∂

∂t −
∂2

∂x2 and for numerical and exact solutions wn
j and u,

respectively, i.e., solutions of Lk ,hwn
j = 0 and Lu = 0, respectively, we

say that a numerical scheme Lk ,h converges if wn
j → u for h, k → 0.

Pointwise convergence: Fix x∗ ∈ (0,1) and t∗ > 0. We are interested
in h, k → 0 for x∗ = jh and t∗ = nk fixed. Hence, we can write
wn

j = w t∗/k
x∗/h.

Definition. The approximate solution wn
j converges to the exact

solution u at (x∗, t∗) if ∣∣∣u(x∗, t∗)− w t∗/k
x∗/h

∣∣∣→ 0

as h, k → 0.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 10/ 14



Lax Equivalence Theorem

Theorem: If the linear finite difference scheme is consistent (i.e., its
LTE→ 0 as h, k → 0), then

stability⇐⇒ convergence.

Remark: Hence, it is enough to establish stability and consistency in
order to get convergence.
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Examples of more general parabolic PDEs

Reaction-Diffusion equations The general form is

ut = κuxx + f (x , t ,u)

where f represents the reaction term.
Note: r becomes κr , hence the FTCS scheme is unstable for
κr > 1/2. The reaction term is approximated by f (xj , tn,wn

j ) at
time level n. If f (x , t ,u) is nonlinear in u, and if we use an implicit
scheme, then we will end up with a set of nonlinear equations for
wn+1

j at each time level.
Linear equations with varying coefficients
A typical equation is

ut = A(x , t)uxx + B(x , t)ux + C(x , t)u

We replace A(x , t) by An
j = A(xj , tn) etc.
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The Black-Scholes equation
is a linear equation with variable coefficients. It describes the
value of an option to buy shares at time T at the price E . If S(T ) is
the value of the share price at t = T , and if S(T ) > E , buy them
(exercise the option), if S(T ) ≤ E , don’t buy (no profit). What is
the value of this option V (t ,S) at t = 0? It satisfies the
Black-Scholes PDE

Vt + ρSVs +
1
2
σ2S2Vss − ρV = 0, t ∈ [0,T ]

where ρ is the interest rate, σ is the share volatility, and S is the
share price. The boundary conditions are V (0, t) = 0 and
limS→∞ V (S, t)/S = 1, since (V ∼ S − E). The final condition is
V (S,T ) = max(S − E ,0), E given. We know S = S0 at t = 0 (i.e.
now) and want to work out V (S0,0). We approximate
V (Sj , tn) ≈W n

j .
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Approximating for the terms in the usual way we get for example
for the FTCS scheme:

W n+1
j −W n

j

k
+ ρSj

W n
j+1 −W n

j−1

2∆S

+
1
2
σ2S2

j
W n

j−1 − 2W n
j + W n

j+1

∆S2 − ρW n
j = 0

However the method of solutions is a little different, we solve this
starting at t = T and working backwards in time to get to t = 0.
Then we see if the computed value V (S0,0) is higher or lower
than the price being asked for the option.
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