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ﬂ Multilevel schemes for the heat equation
@ Convergence
0 Lax Equivalence Theorem

o Examples of more general parabolic PDEs

d



Multilevel Schemes: 1. The Richardson scheme

Multilevel schemes: are numerical schemes that involve more than 2
time levels. We consider subsequently only the heat equation.
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Multilevel Schemes: 1. The Richardson scheme

Multilevel schemes: are numerical schemes that involve more than 2
time levels. We consider subsequently only the heat equation.

1. The Richardson scheme: approximates u; by the Central

Difference operator %u(xj, tn) such that with the usual 2—% in space we
get
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Multilevel Schemes: 1. The Richardson scheme

Multilevel schemes: are numerical schemes that involve more than 2
time levels. We consider subsequently only the heat equation.

1. The Richardson scheme: approximates u; by the Central

Difference operator %u(xj, tn) such that with the usual f,é in space we
get

n+1 . n—1 2 n n n
&W-n _ % Wi _ 0% n_. Wi+ 2Wl T Wit
- 2k h2 h2 ?

which gives the Richardson scheme

1 1 ;
wit =wit 2r(wly —2w) +why), n>1j=1,...,J-1.
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Claim: The Richardson scheme is unstable for all r.



Stability of the Richardson scheme

Claim: The Richardson scheme is unstable for all r.
Proof: Inserting w/” = ¢"e’/ into the scheme gives

€2 + 8rsin? <;w>§—1 =0.
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Stability of the Richardson scheme

Claim: The Richardson scheme is unstable for all r.
Proof: Inserting w/” = ¢"e’/ into the scheme gives

€2 + 8rsin? <;w>§—1 =0.

Stability requires |¢1] , [&2] < 1.
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Stability of the Richardson scheme

Claim: The Richardson scheme is unstable for all r.
Proof: Inserting w/” = ¢"e’/ into the scheme gives

€2 + 8rsin? <;w>§—1 =0.

Stability requires |£1] , [£2]| < 1. Note that

E-&)E-&)=EE+b¢+c

and hence

b=—(& +&), c=&&.
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Stability of the Richardson scheme
Claim: The Richardson scheme is unstable for all r.
Proof: Inserting w/” = ¢"e’/ into the scheme gives

€2 + 8rsin® <;w>§1 =0.

Stability requires |£1] , [£2]| < 1. Note that

E-&)E-&)=EE+b¢+c

and hence
b=—(& +&), c=&&.

Since |c| =1 = aand |b| # 2, we must have |£4]|&2] = 1
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Stability of the Richardson scheme

Claim: The Richardson scheme is unstable for all r.
Proof: Inserting w/” = ¢"e’/ into the scheme gives

€2 + 8rsin® <;w>§1 =0.

Stability requires |£1] , [£2]| < 1. Note that

E-&)E-&)=EE+b¢+c

and hence
b=—(& +&), c=6&.
Since |c| =1 = aand |b| # 2, we must have |£4] (2| = 1 and either

(i) both & complex (Not the case since: (¢ + /)2 = £2 + 2i¢ — 1 and
b = 8rsin?(w/2) is not complex), or
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Stability of the Richardson scheme

Claim: The Richardson scheme is unstable for all r.
Proof: Inserting w/” = ¢"e’/ into the scheme gives

€2 + 8rsin® <;w>§1 =0.

Stability requires |£1] , [£2]| < 1. Note that

E-&)E-&)=EE+b¢+c

and hence
b=—(& +&), c=&&.

Since |c| =1 = aand |b| # 2, we must have |£4] (2| = 1 and either
(i) both & complex (Not the case since: (¢ + /)2 = £2 + 2i¢ — 1 and
b = 8rsin?(w/2) is not complex), or

(ii) both real and distinct with |¢;| < 1 and the other > 1.
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Solving the quadratic gives

€10 = £+ = —4rsin? g - \/1 + 16r2 sin* g,
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Solving the quadratic gives

£12 = Ex = —4rsin? g + \/1 +16r2sin* g,
then if both roots are real, one will have |¢| > 1. In fact

. = —p—1/1+p? p:4rsin2g20
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Solving the quadratic gives

£12 = Ex = —4rsin? g + \/1 + 16r2sin? g

then if both roots are real, one will have |¢| > 1. In fact

so clearly [£-| > 1 when p > 0, and hence the Richardson sheme is
unstable for all r.
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Solving the quadratic gives

£12 = Ex = —4rsin? g + \/1 + 16r2sin? g

then if both roots are real, one will have |¢| > 1. In fact

so clearly [£-| > 1 when p > 0, and hence the Richardson sheme is
unstable for all r.

Note: The Richardson scheme becomes useful after a slight
modification as we will see subsequently.
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Replace in the Richardson method the term wj” by the average
(an-H + an—1)/2,



The Du Fort-Frankel scheme

Replace in the Richardson method the term an by the average
(an+1 - an_1)/2, then we obtain the Du Fort-Frankel scheme

Lipw? = - i J i i

n+1 n—1 n n—1 n+1 n
w: — W 3 w_,—Ww, — W + VI//-Jr1
j oK h?
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The Du Fort-Frankel scheme

Replace in the Richardson method the term an by the average
(an+1 - an_1)/2, then we obtain the Du Fort-Frankel scheme

Lipw? = - i J i i

n+1 n—1 n n—1 n+1 n
w: — W 3 w_,—Ww, — W + VI//-Jr1
j oK h?

which for r := k/h? after re-arranging reads as follows

1-—2r 2r
n+1 _ n—1
/I 1+ 2r

(VVIL + an+1> ,  (DFS)
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The Du Fort-Frankel scheme

Replace in the Richardson method the term an by the average
(an+1 - an_1)/2, then we obtain the Du Fort-Frankel scheme

D o o j J j j
ko 2k 2

witt — <w.n1 —w o wt vvj”H)

which for r := k/h? after re-arranging reads as follows

n1 1 =2r . 4 2r

n n
W = e e (Wt wha), (DFS)

Remark. This scheme is explicit but needs to be provided with w' by a
different scheme.
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Exercise: Show that the LTE of the Du Fort-Frankel scheme is

2
LTE = <r2 — 112> Uy P + ’;um + O(k*, h*, r*h°)

i.e. it is second order in time and space.
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Exercise: Show that the LTE of the Du Fort-Frankel scheme is

2
LTE = <r2 - 112) U WP + ’;um + O(k*, h*, r*h®)

i.e. it is second order in time and space.

Claim: The Du Fort-Frankel scheme is unconditionally stable for all
r>0.

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 7/ 14
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Exercise: Show that the LTE of the Du Fort-Frankel scheme is

2
LTE = <r2 — 112) ug % + l;um + O(k*, h*, r*h®)

i.e. it is second order in time and space.

Claim: The Du Fort-Frankel scheme is unconditionally stable for all
r>0.

Proof: By the von Neumann stability method one can easily show
(Exercise) that the Du Fort-Frankel scheme leads to the following
quadratic equation for the amplification factor

(142r)¢2 —4récosw+2r—1=0,
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Exercise: Show that the LTE of the Du Fort-Frankel scheme is

2
LTE = <r2 — 112) ug % + l;um + O(k*, h*, r*h®)

i.e. it is second order in time and space.

Claim: The Du Fort-Frankel scheme is unconditionally stable for all
r>0.

Proof: By the von Neumann stability method one can easily show
(Exercise) that the Du Fort-Frankel scheme leads to the following
quadratic equation for the amplification factor

(142r)¢2 —4récosw+2r—1=0,

whose roots are

_ 2rcosw+ V1 —4r2sin®w

14+ 2r

E+
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We discuss now two different cases w.r.t. the discriminant:
(i) 4r?sin®w < 1, so both roots are real. It follows that

_ 2rcosw+ V1 —4r2sinfw _ 2rcosw + 1

e 14+ 2r = 142

since cosw < 1 for all w,

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9

8/ 14

HERIOT
FIWATT

<7 universiTY




We discuss now two different cases w.r.t. the discriminant:
(i) 4r?sin®w < 1, so both roots are real. It follows that

_ 2rcosw+ V1 —4r2sinfw _ 2rcosw + 1
T 1+2r = A42r -

since cosw < 1 for all w, and moreover (since cosw > —1 for all w)

_ /1 — 4r2 qin? _
< 2r +- v 1 4rsmw> 2r

&2 1+2r “Ix2r”

9

ie. —1 <& <1.
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We discuss now two different cases w.r.t. the discriminant:
(i) 4r?sin®w < 1, so both roots are real. It follows that

_ 2rcosw+ V1 —4r2sinfw _ 2rcosw + 1
e 14 2r = 1+2r -

)
since cosw < 1 for all w, and moreover (since cosw > —1 for all w)

_ /1 — 4r2 qin? _
< 2r +- v 1 4rsmw> 2r

&2 1+2r =142

> —1,

i.e. —1 < &4 < 1. Similarly, it holds that —1 < ¢_ < 1, so in this
case both roots satisfy |£| < 1.
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We discuss now two different cases w.r.t. the discriminant:
(i) 4r?sin®w < 1, so both roots are real. It follows that

_ 2rcosw+ V1 —4r2sinfw _ 2rcosw + 1
e 14 2r = 1+2r -

)
since cosw < 1 for all w, and moreover (since cosw > —1 for all w)

_ /1 — 4r2 qin? _
< 2r +- v 1 4rsmw> 2r

&2 1+2r =142

> —1,

i.e. —1 < &4 < 1. Similarly, it holds that —1 < ¢_ < 1, so in this
case both roots satisfy |£| < 1.

(i) 4r2sin?w > 1, so both roots of the quadratic are complex, i.e.
&+ = a+ifp, where

2r cosw Var2sin?w — 1
o= —— .

Tror: P= 1t2r
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We discuss now two different cases w.r.t. the discriminant:
(i) 4r?sin®w < 1, so both roots are real. It follows that

_ 2rcosw+ V1 —4r2sinfw _ 2rcosw + 1
e 14 2r = 1+2r -

)
since cosw < 1 for all w, and moreover (since cosw > —1 for all w)

—2r+ /1 —4r2sin®w —2r
> >

&2 1+2r =142

> —1,

i.e. —1 < &4 < 1. Similarly, it holds that —1 < ¢_ < 1, so in this
case both roots satisfy |£| < 1.

(i) 4r2sin?w > 1, so both roots of the quadratic are complex, i.e.
&+ = a+ifp, where

2r cosw Var2sin?w — 1
o= —-—" :

Tror: P= 1t2r

This means that |{,| = |£_|.
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But the product of the two roots is (2r — 1)/(1 + 2r) and so both
roots must satisfy
o |2r—1|
=L 1 L
€] 1+2r — 1

forallr > 0,and so || < 1 forany r.
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But the product of the two roots is (2r — 1)/(1 + 2r) and so both
roots must satisfy
o |2r—1j
= 1<
€] 1+2r — 1
forallr > 0,and so || < 1 forany r.

This proves the claim. |
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But the product of the two roots is (2r — 1)/(1 + 2r) and so both
roots must satisfy
o |2r—1j
= 1<
€] 1+2r — 1
forallr > 0,and so || < 1 forany r.

This proves the claim. |

Comparison of methods:

Scheme Comments Stability LTE
Du Fort-Frankel | explicit, but different | Vr O(r?h?, H?, k?). Second or-
scheme required for der if k = O(h?), fourth order
W' if k = H/v12
Crank-Nicolson | implicit: need to solve | Vr O(h?, k?). Second order in
©=1/2) a tridiagonal system space and time separately
(not too bad)
FTCS (9 = 0) explicit Vr<1/2 | O(h?,k). Second order if
k = O(h?), fourth order if
k=H/6
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Basic idea: For a difference operator Ly , that approximates

_ 0 2
L=% -3



Convergence

Basic idea: For a difference operator Ly , that approximates

2 q o
L = £ — 55 and for numerical and exact solutions w/" and u,
respectively, i.e., solutions of Ly hw” 0 and Lu = 0, respectively,
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Convergence

Basic idea: For a difference operator Ly , that approximates

L=2 - a% and for numerical and exact solutions w;" and u,
respectively, i.e., solutions of Lkthj” = 0 and Lu = 0, respectively, we
say that a numerical scheme Ly , converges if wj” — ufor h,k — 0.
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Convergence

Basic idea: For a difference operator Ly , that approximates

2 0 0
L = £ — 55 and for numerical and exact solutions w/" and u,
respectively, i.e., solutions of L hwj” 0 and Lu = 0, respectively, we
say that a numerical scheme Ly , converges if w/- — ufor h,k — 0.

Pointwise convergence: Fix x* € (0,1) and * > 0.
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Convergence

Basic idea: For a difference operator Ly , that approximates

L=2 - dajz and for numerical and exact solutions w/” and u,
respectively, i.e., solutions of L hwj” 0 and Lu = 0, respectively, we
say that a numerical scheme Ly , converges if w/- — ufor h,k — 0.

Pointwise convergence: Fix x* € (0,1) and t* > 0. We are interested
in h, k — 0 for x* = jhand t* = nk fixed.
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Convergence

Basic idea: For a difference operator Ly , that approximates

2 q o
L= 5 — 2 and for numerical and exact solutions w/" and u,
respectively, i.e., solutions of L hwj” 0 and Lu = 0, respectively, we
say that a numerical scheme Ly , converges if w/- — ufor h,k — 0.

Pointwise convergence: Fix x* € (0,1) and t* > 0. We are interested
in h, k — 0 for x* = jhand t* = nk fixed. Hence, we can write

n__ o t/k
W' = W.)p.

HERlOT
iy WAT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 10/ 14



Convergence

Basic idea: For a difference operator Ly , that approximates

L=2 - a% and for numerical and exact solutions w" and u,
respectively, i.e., solutions of Lkthj” = 0 and Lu = 0, respectively, we
say that a numerical scheme Ly , converges if wj” — ufor h,k — 0.

Pointwise convergence: Fix x* € (0,1) and t* > 0. We are interested
in h, k — 0 for x* = jhand t* = nk fixed. Hence, we can write

an = Wx*/h'

Definition. The approximate solution an converges to the exact
solution u at (x*, t*) if

u(x*, t*) — wh/k

< Ih —0

as h, k — 0.
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Theorem: If the linear finite difference scheme is consistent (i.e., its
LTE — 0 as h, k — 0), then



Lax Equivalence Theorem

Theorem: If the linear finite difference scheme is consistent (i.e., its
LTE — 0 as h, k — 0), then

stability <= convergence.
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Lax Equivalence Theorem

Theorem: If the linear finite difference scheme is consistent (i.e., its
LTE — 0 as h, k — 0), then

stability <= convergence.

Remark: Hence, it is enough to establish stability and consistency in
order to get convergence.
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Examples of more general parabolic PDEs

@ Reaction-Diffusion equations The general form is
Ut = klUxx + f(X, t,U)

where f represents the reaction term.
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Examples of more general parabolic PDEs

@ Reaction-Diffusion equations The general form is
Ut = klUxx + f(X, t,U)
where f represents the reaction term.

Note: r becomes «r, hence the FTCS scheme is unstable for
kr>1/2.
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Examples of more general parabolic PDEs
@ Reaction-Diffusion equations The general form is

Ut = klUxx + f(X, t,U)

where f represents the reaction term.
Note: r becomes «r, hence the FTCS scheme is unstable for

xr > 1/2. The reaction term is approximated by f(x;, t, w/") at
time level n.
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Examples of more general parabolic PDEs

@ Reaction-Diffusion equations The general form is
Ut = klUxx + f(X, t,U)

where f represents the reaction term.

Note: r becomes «r, hence the FTCS scheme is unstable for

xr > 1/2. The reaction term is approximated by f(x;, t, w/") at
time level n. If f(x, t,u) is nonlinear in u, and if we use an implicit
scheme, then we will end up with a set of nonlinear equations for

Wj”+1 at each time level.
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Examples of more general parabolic PDEs

@ Reaction-Diffusion equations The general form is
Ut = klUxx + f(X, t,U)

where f represents the reaction term.

Note: r becomes «r, hence the FTCS scheme is unstable for

xr > 1/2. The reaction term is approximated by f(x;, t, w/") at
time level n. If f(x, t,u) is nonlinear in u, and if we use an implicit
scheme, then we will end up with a set of nonlinear equations for

Wj”+1 at each time level.

@ Linear equations with varying coefficients
A typical equation is

ur = A(x, Huxx + B(x, t)ux + C(x, Hu

We replace A(x, t) by A7 = A(x;, tn) etc.

HERIOT
AT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 12/ 14



@ The Black-Scholes equation
is a linear equation with variable coefficients. It describes the
value of an option to buy shares at time T at the price E.

HERIOT
TWATT

E Y
TWALT

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 9 13/ 14



@ The Black-Scholes equation
is a linear equation with variable coefficients. It describes the
value of an option to buy shares at time T at the price E. If S(T) is
the value of the share price att = T, and if S(T) > E, buy them
(exercise the option), if S(T) < E, don’t buy (no profit).
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@ The Black-Scholes equation
is a linear equation with variable coefficients. It describes the
value of an option to buy shares at time T at the price E. If S(T) is
the value of the share price att = T, and if S(T) > E, buy them
(exercise the option), if S(T) < E, don’t buy (no profit). What is
the value of this option V(t,S) at t = 0?
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@ The Black-Scholes equation
is a linear equation with variable coefficients. It describes the
value of an option to buy shares at time T at the price E. If S(T) is
the value of the share price att = T, and if S(T) > E, buy them
(exercise the option), if S(T) < E, don’t buy (no profit). What is
the value of this option V(t,S) at t = 07 It satisfies the
Black-Scholes PDE

’
Vi + pSVs + §a2s2vss —pV =0, te[0,T]

where p is the interest rate, o is the share volatility, and S is the
share price. The boundary conditions are V(0, t) = 0 and
lims_,. V(S,t)/S =1, since (V ~ S — E). The final condition is
V(S, T) =max(S — E,0), E given. We know S = Sy at t =0 (i.e.
now) and want to work out V(Sy, 0). We approximate

V(Sj, tn) =~ W/
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Approximating for the terms in the usual way we get for example
for the FTCS scheme:

1
W W e Wi — W
k 7 2AS
1 2 SWIy —2W + W],
T2 e —PW =0

However the method of solutions is a little different, we solve this
starting at t = T and working backwards in time to getto t = 0.
Then we see if the computed value V(Sy,0) is higher or lower
than the price being asked for the option.
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