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Abstract. We propose a novel and general variational framework modelling particle

adsorption mechanisms on evolving immiscible fluid interfaces. A by-product of

our thermodynamic approach is that we systematically obtain analytic adsorption

isotherms for given equilibrium interfacial geometries. We validate computationally our

mathematical methodology by demonstrating the fundamental properties of decreasing

interfacial free energies by increasing interfacial particle densities and of decreasing

surface pressure with increasing surface area.
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1. Introduction

Adsorption processes on interfaces are of great importance in a wide spectrum

of scientific and industrial applications such as the stabilization of foams [1], the

formulation of nanoporous materials, functional membranes and capsules, drug delivery

[2, 3] and oil recovery [4], to name but a few. Also, many aerated food products such

as bread cake, meringue, ice-cream and mousse are based on stabilized emulsions. Not

surprisingly, (particle) adsorption has been an active topic of both experimental and

theoretical research for several decades. Equally important are mixtures of different

types of particles which require a dynamic description of the interfacial tension due to

interactions between the different species involved, especially if one considers surfactants.

In general, the interface between any two bulk neighbouring phases characterizes

and mediates any physical process occuring between these two phases. Additional
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complexities include adsorption phenomena observed for charged particles [5], capping

ligands [6], or swelling latex particles [7] on fluid-fluid interfaces.

Here, we develop a new and generic free-energy formalism for dynamic but diffuse

interfaces in arbitrary spatial dimensions. So far, a small number of previous modelling

attempts was restricted to a specific one-dimensional setting with a fixed interface [8, 9]

or neglected fluid flow in an extension of [8, 9] to a diffuse interface formulation [10]. We

incorporate the experimentally important characterization of particles by the contact

angle into our mathematical description. Our derivation is based on well-established

and rigorous mathematical results which connect the diffuse interface approach, i.e.,

the van der Waals/Cahn-Hilliard free-energy formalism, to the interfacial tension. This

result is known as the Modica-Mortola theorem [11] and relates the interfacial tension

to the homogeneous free energy, e.g. the classical and phenomenological double-well

potential W (s) := (1− s2)2/4.

Our formalism further generalizes the notions (e.g. employed in [12]) of microscopic

surface tension σ, which describes a particle-free interface, as well as the macroscopic

surface tension σA, which depends on the density c of adsorbed particles, i.e., we can

write the surface pressure Πs(c) from [12, equation (33)] in the more general form

Πs(φ, c) = σ − σA = −
∫

Ω

s(λ)W (φ)fI(φ, c) dx ,

since the particle-free interface is related to the perimeter functional σ =
∫

Ω
e(φ) dx and

hence the macroscopic surface tension reads σA =
∫

Ω
e(φ) + s(λ)W (φ)fI(φ, c) dx , see

also (5), (6), and Figure 5 below. The variable fI(φ, c) defines a specific interfacial free

energy and s(λ) represents a scaling factor which depends on the parameter λ weighting

the gradient penalty term. Finally, Ω ⊂ Rd denotes the domain occupied by the whole

system.

We investigate in detail the case of ad- and de-sorption of uniform particles [13]

and then give a generalization towards mixtures of particles which even allow to account

for surface active species, such as surfactants [14, 15]. We further extend the new free

energy formulation towards incompressible and immiscible fluid flows. Our approach

also provides a solid basis for extensions of studies on the formation and evolution of

electrical double layers in electrochemistry [16, 17], with applications in energy storage

devices such as supercapacitors, batteries, and micro-fluidic devices.

2. Adsorption on dynamic interfaces

In one dimension and for a fixed fluid-fluid interface at x = 0 (in the sense of “Gibbs

surface”), the following free energy

γex(c) :=

∫ ∞
0

f exb (c)+fI(c)δ0(x) dx , (1)

was studied by Andelman, Ariel, and Diamant [8, 9] and by Mohrbach [18]. δ0(x)

stands for the Dirac delta function that is unity at x = 0 and zero elsewhere.



General framework for adsorption processes on dynamic interfaces 3

c(x, t) represents a local volume fraction of particles in the immiscible two-phase

fluid. and the variable f exb stands for the excess in bulk grand canoncial

free energy density which is defined by the ideal entropy of mixing, i.e. f exb (c) :=

(kBT [c(log c− 1)− cb(log cb − 1)]− µb(c− cb)) /a3, where a > 0 is the molecular

dimension of the particles. µb and cb denote fixed equilibrium bulk chemical potential

µb := limx→∞ µ(x) and fixed bulk volume fraction density of the particles cb :=

limx→∞ c(x), respectively. To properly account for the higher particle concentration

at a fluid-fluid interface, the entropy of mixing with an additional adsorption parameter

α and interaction parameter β is introduced by

fI(c) :=
(
kBT [clog c+ (1− c)log(1− c)]

− αc− β/2c2 − µIc
)
/a2 ,

(2)

where the chemical potential µI is equal to the chemical potential of the solution next to

the interface, i.e., µI := limx→0 µ(x). We note that β accounts in an effective/averaged

manner for local interactions between the particles and the immiscible fluids. This

simplified formulation does not account for the geometry and evolution of the interface

formed between the two immiscible fluids [19].

Here, we shall develop a generic theoretical and computational framework that

accounts for both the particle densities and a dynamic immiscible interface which are

nonlinearly coupled. Our framework builds also the basis for studying specific particles

such as surfactants which can be accounted for by the interaction energy defined via β

in (2). First, we include the characterization of particles by the contact angle into the

free energy (2) , where the variable c subsequently represents the density of particles

for convenience. Based on the well-known free-energy change induced by primary

mechanism of adsorption at the fluid-fluid interface [1, 6, 20], we correspondingly write

for a change in particle density

δFads := −γ12π (1− |cos θ|)2 δc , (3)

for adsorbing a single particle, where θ is the contact angle formed at the triple phase

interface and γ12 the contact angle formed between the particle-free immiscible fluid

interface. Via a first-order Taylor approximation around equilibrium at the interface I,

i.e., γex(cb + δc)
∣∣∣
I
≈ γex(cb)

∣∣∣
I

+ δγex(cb)
δc

δc
∣∣∣
I
, we can identify

δFads =
(
γex(cb + δc)− γex(cb)

)∣∣∣
I

=
δγex

δc
(cb)
∣∣∣
I
δc , (4)

where δc is a small variation of the interfacial particle density. This finally allows us to

define α for a given interaction energy β , which can be identified as the absolute value

of the minimum energy of an associated inter-particle potential, e.g. of Lennard-Jones

type.
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2.1. Adsorption of uniform particles

We now generalize (1) towards a diffuse interface formulation by introducing an

additional order parameter φ based on the well-accepted Cahn-Hilliard approximation,

i.e., e(φ) := W (φ)+λ2 |∇φ|2, where W (s) := (1−s2)2/4 is the dimensionless double-well

potential.

We note that λ is proportional to the interfacial width and hence proportional to the

molecular dimension a and the particle concentration c. Variational considerations imply

that W (φ) is only non-zero in a diffuse neighborhood around the interface. Therefore,

we define the following free-energy density

f(φ, c) := e(φ) + s(λ)W (φ)fI(φ, c) + χ1(φ)f exb (c) , (5)

where s(λ) := 3
√

2/λ (see also [21, 22]) and

fI(φ, c) :=

(
kBT [sn(c) + sn(|φ|) + (1− c− |φ|)sn(1− c− |φ|)]− (α + µI)c− 1

2
βc2
)

a2
, (6)

for sn(c) := clogc, and µI = µ|I denotes again the chemical potential adjacent to

the interface as in (2). The parameter cb stands for the bulk equilibrium density of

particles, i.e., cb := mtot

L(Ω1)
, where mtot is the total number of particles and L denotes

the Lebesgue measure such that L(Ω1) :=
∫

Ω
χ1(φ) dx represents the area of phase

φ = +1. From [23], one can approximate the characteristic function for the interface by

χI(φ) ≈ 3
√

2
λ
W (φ). The definition (5) is physically and mathematically motivated by

the Modica-Mortola theorem [11] which relates the surface tension to the double-well

potential W . Moreover, the energy density e in (5) is known to represent the perimeter

of the phase enclosed by the interface in the sharp interface limit λ→ 0. Furthermore,

χ1(φ) := (φ+1)/2 approximates the characteristic function of the phase φ = +1 in which

the bulk solid particles are diffusing in the sense of Brownian motion. This altogether

allows us to introduce the new interfacial energy (i.e., interfacial tension which depends

on the particle density) for arbitrary, dynamic, and higher dimensional interfaces by

γex(φ, c) :=

∫
Ω

f(φ, c) dx . (7)

Finally, the change in the particle density c is primarily governed by the status of the

interface φ but the physical role of φ and c is not the same. Due to this different physical

role, we need to distinguish the processes associated with these two variables in our free

energy modelling. The first variation of (7) with respect to c leads to the following

chemical potential at the interface I,

µexc

∣∣∣
I
:=

δγex

δc

∣∣∣
I

=
(
kBT log

c

1− c− |φ|
− α− βc

− µI
)

s(λ)W (φ)
∣∣∣
I
.

(8)

In thermodynamic equilibrium we have that µI = µb since the chemical potentials are

everywhere equal to the bulk chemical potential µb = kBT logcb. Hence, the variation
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Figure 1. Generalized adsorption isotherm in (9) for β = 0, φeq(x) =

tanh
(
x/(2
√

2λ)
)
, different interfacial widths λ, and different adsorption parameters

α. (a) α = 0.5, λ = 0.001. (b) α = 0.5, λ = 0.0005. (c) α = 3.0, λ = 0.001. (d)

α = 3.0, λ = 0.0005.

in the excess chemical potential vanishes, i.e., µexc
∣∣
I

= 0, and we obtain with (8) and

1− c = (|φ|+ 1)/2 the new adsorption isotherm

c =

(
cb(1− |φ|)

cb + exp [−(α + βc)/(kBT )]

)∣∣∣∣∣
I

, (9)

which also accounts for the state of the interior phase. If we neglect interactions, i.e., β =

0, and set s(λ) = 1/W (φ) with φ = 0 (value on the interface), then (9) represents the

classical Langmuir adsorption isotherm. Figure 1 depicts the adsorption isotherm (9) for

an interface at x = 0 and the well-known equilibrium profile φeq(x) = tanh
(
x/(2
√

2λ)
)
.

The expression in (7) can be interpreted as the free energy of the interface, which

is located at x ∈ Ω such that φ = 0, with particle concentrations c. We then derive

evolution equations by the principle of steepest descent and its functional generalization

to gradient flows. That means, we obtain the gradient flows
∂φ
∂t

= div
(
Mφ∇

(
δγex

δφ

))
,

∂c
∂t

= div
(
cMc∇

(
δγex

δc

))
,

(10)

where the equations are made dimensionless by the bulk diffusion time scales τφ := kBTa
3

Mφ

and τc := kBTa
3

Mc
. We note that the mobilities Mφ and Mc can be related to a scalar

product with respect to which we measure the variational derivatives δγex

δφ
and δγex

δφ
. It
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is straightforward to verify that φ and c are conserved quantities after multiplying both

sides in (10) by 1, integrating over space Ω, integration by parts on the right-hand side,

and a final integration over time. It is also noteworthy that a new stochastic mode

reduction strategy for gradient-flow systems was recently proposed in [24] and it allows

for a rigorous dimensionally reduced description for such systems.

2.2. Adsorption of different types of particles

For simplicity, we state subsequent equations for identical molecular dimension a for

both types of particles c1 and c2 while noting that a generalization towards different

molecular dimensions is straightforward. In order to account for mixtures of two (i.e.,

c1 and c2, whereas an according extension to an arbitrary but finite number of different

types of particles is straightforward), we extend the interfacial free energy (2) as follows

fI(c1, c2, φ) =
1

a2

(
kBT

[
sn(c1) + sn(c2) + sn(|φ|) + sn(1− c1 − c2 − |φ|)

]
− ε12c1c2 − (α1 + µ1

I)c1 − (α2 + µ2
I)c2 −

β1

2
c2

1 −
β2

2
c2

2

)
,

(11)

where sn(c) := clogc and ε12 is the interaction energy between c1 and c2. µ1
I and µ2

I are

chemical potentials of a subsurface layer in contact with the interface such that µiI 6= µbi
for i = 1, 2 out of equilibrium. But for simplicity, we will later on assume that µiI = µbi
for i = 1, 2 where µbi represent the corresponding bulk chemical potentials. Based on

(5) and (11), we then define the generalized surface tension γex according to (7), where

f exb is canonically extended towards

f exb (c1, c2) =

(
kBT

[
c1 (logc1 − 1)− cb1

(
logcb1 − 1

)
+ c2 (logc2 − 1)− cb2

(
logcb2 − 1

)]
− µ1

I

(
c1 − cb1

)
− µ2

I

(
c2 − cb2

))
/a3 .

(12)

Herewith, we formally obtain the two chemical potentials

µex1
∣∣
I

:=
δγex

δc1

= s(λ)W (φ)
[
kBT log

c1

1− c1 − c2 − |φ|
− β1c1 − ε12c2 − (α1 + µ1

I)
] 1

a2

+ χ1(φ)
∣∣
I

[
kbT (logc1 − 1)− µ1

I

] 1

a3
,

µex2
∣∣
I

:=
δγex

δc2

= s(λ)W (φ)
[
kBT log

c2

1− c1 − c2 − |φ|
− β2c2 − ε12c1 − (α2 + µ2

I)
] 1

a2

+ χ1(φ)
∣∣
I

[
kbT (logc2 − 1)− µ2

I

] 1

a3
,

(13)

where the characteristic functions for the bulk phase φ = +1 vanish at the interface I,

i.e., χ1(φ)
∣∣
I

= 0. At equilibrium, the excess chemical potentials (13) are set to zero by
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Figure 2. (a) Equilibrium phase field variable φeq(x) = tanh
(
dr(x)/(2

√
2λ)
)

defined

via the signed distance function dr(x) =
√

(x− x0)2 + (y − y0)2 − r. (b) Generalized

adsortion isotherm in Equation (9) with cb = 0.75, λ = 0.0005, and r = 0.4. (c) Free

energy γex(ceq, φeq) for equilibrium particle concentration which is computed under an

equilibrium phase field φeq.

the assumption that the chemical potential is globally equal to the bulk values. This

leads then to the adsorption isotherms,

c1 =
cb1(1− c2 − |φ|)

cb1 + e−(α1+β1c1+ε12c2)/(kBT )
,

c2 =
cb2(1− c1 − |φ|)

cb2 + e−(α2+β2c2+ε12c1)/(kBT )
,

(14)

where cb1 and cb2 are the equilibrium bulk densities. If we set s(λ) = 1/W (φ) and the

particle interactions βi = 0, i = 1, 2, as well as ε12 = 0, then we again end up with the

Langmuir adsorption isotherm.

We also recover the same dynamic equations (10) after replacing (10)2 by two

corresponding equations, i.e., for the chemical potentials (13) instead of δγex

δc
introduced

in (13).

2.3. Generalization to incompressible fluids

We adapt the variational principles in [19, 25] in order to generalize (a) and (b) to

include fluid flow. In the context of porous media, related variational methods have
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been applied in [26]. We extend γex to the action functional

F (x(X, t) =

∫ T

0

∫
Ω

(
1

2
|xt(X, t)|2

− λ2

2

∣∣∣D̂−1∇xφ(x(X, t), t)
∣∣∣2 − λ2W (φ(x(X, t), t))

− s(λ)W (φ(x(X, t), t))fI(c(x(X, t), t))

− χ1(φ(x(X, t), t))f exb (c(x(X, t), t))

)
det D̂ dX dt ,

(15)

for the interfacial width λ ∝ (surface tension)× (capillary width). We restrict ourselves

to incompressible fluids and define the reference (Eulerian) coordinate x(X, t) via the

material (Lagrangian) coordinate X, i.e.,

xt(X, t) = u(x(X, t), t) , x(X, 0) = X , (16)

and D̂(x(X, t), t) = ∂x(X,t)
∂X

is th deformation tensor (strain) of the flow map [16]. The

kinetic energy density 1
2
|xt(X, t)|2 leads to the Eulerian part of the incompressible

Navier-Stokes equation. The terms arising due to the presence of particles, are

W ′(φ)fI(c)∇φ, W (φ)f ′I(c)∇c , and 1
2
f exb (c)∇φ + χ1(φ)f ex

′

b (c)∇c , such that we end

up with the following momentum equation

∂u
∂t

+ u · ∇u−∆u +∇p
= −λ2div

(
∇φ⊗∇φ−W (φ)̂I

)
−s(λ)W ′(φ)fI(c)∇φ− s(λ)W (φ)f ′I(c)∇c
−1

2
f exb (c)∇φ− χ1(φ)f ex

′

b (c)∇c ,
div (u) = 0 ,

(17)

where Î is the identity tensor. We note that the viscous term −∆u in equation [17] enters

by the maximum dissipation principle (PMD) [27, 28, 29]. The variational framework

(15) and (16) also extends the gradient flow (10) for the single and mixed particles to

fluid flow by the coupled partial differential equations (PDEs)
∂φ
∂t

+ u · ∇φ = div
(
Mφ∇

(
δF
δφ

))
,

∂c
∂t

+ u · ∇c = div
(
cMc∇

(
δF
δc

))
.

(18)

3. Computations: Verification of decreasing interfacial tensions and surface

pressure rise

We scrutinize our modelling and computational framework with two model computations

for equilibrium particle densities cb = mtot

L(Ω1)
= 275mp
L(Ω1)

and cb = 350mp
L(Ω1)

, where mp is the

mass of a single particle. For simplicity, we neglect fluid flow. In Fig. 3 we depict

computational results of characteristic quantities such as the interfacial tension, free
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Figure 3. Computation with 275 particles. (a) Decay of interfacial tension as a

result of minimizing the free energy (7). (b) Interfacial energy density.

energy, and particle configurations. We observe that the interfacial tension γex(φ, c)

decreases with increasing particle density c, see (7), and also a non-uniform interfacial

energy e(φ) due to the presence of particles on the interface and the dependence of

phase field parameter φ on c. Herewith, we recover the primary experimental feature

of a decreasing interfacial tension [Fig. 3 (a)] under the adsorption of particles as

for instance demonstrated in [13]. Also in a second computation our computational

framework captures the experimentally observed decrease of interfacial energy by an

increase of the interfacial particle density [13], see Fig. 4 (a).

Figure 4. Computation with 350 particles. (a) Decay of the interfacial tension by

minimizing (7). (b) Interfacial energy density.

Finally, we could also recover the experimentally observed behaviour of the surface

pressure Πs in dependence of the interfacial area As as investigated in [30] for instance.

The adsorption on a circular interface is shown in Fig. 5. Under these conditions and

after setting (8) to zero, we obtain an expression for the equilibrium surface pressure
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Figure 5. Surface pressure vs. surface area, i.e., Πs vs. As. We note that here the

surface is 1D as part of a two-dimensional domain Ω := [−10, 10]2 ⊂ R2 and represents

the circumference of a disk with phase φ = −1, interface φ = 0, and the phase of the

other immiscible fluid is φ = +1. Hence, the x-coordinate is the radius R as part of

the circumference As = 2πR.

σ
∣∣
eq
− σA

∣∣
eq

= Πs(φeq, ceq) = −
∫

Ω
s(λ)W (φeq)fI(φeq, ceq) dx, where σ =

∫
Ω
e(φ) dx is the

microscopic surface tension and σA :=
∫

Ω
e(φ) + s(λ)W (φ)fI(φ, c) dx the macroscopic

surface tension. Our formalism allows to qualitatively validate experimental results

obtained in Aveyard et al. (2000) [30, Figure 2], see Fig. 5. We note that we employed

the adsorption isotherm (9) for the computation of Πs.

Herewith, we have a powerful tool which provides new research directions such as

designing specific interfacial geometries by adding new interfaces at locations where the

energy density is low. This demonstrates that we are able to compute the dynamic

surface tension which depends on the interfacial particle density and geometry. Up

to now, there has not been a formalism which considers the crucial influence of the

interfacial geometry. We emphasize that a further novelty of our framework is that

for dynamic interfaces we account for the wetting characteristics of the particles by

the contact angle which determines the adsorption rate α, see (2) and (4). As

our methodology is based on a new free energy that incorporates all fundamental

ingredients of particles’ adsorption on dynamic interfaces, we can compute relevant

physical quantities of experimental interest, such as the influence of the interfacial

geometry and the particles’ wetting properties on the adsorption rate, for instance.

4. Conclusion

We have outlined a new and general framework for particle adsorption on immiscible

fluid interfaces by a thermodynamic free energy formulation leading to a new coupled

system of PDEs. We further proposed a new efficient multi-level discretization

strategy which accounts for the multi-scale feature of this complex multi-phase problem

characterized by the presence of different length- and time-scales. Our formulation

incorporates the characterization of the particles by the contact angle and captures

the coupled-nonlinear dynamics between particle density and the interfacial location
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and geometry. The generality of our framework also enables to model surfactants,

the incorporation of particles with non-local interactions [12, 31] or even of free

energies obtained from first principles, such as density functional theory for instance,

e.g. [32, 33, 34, 35], while of particular interest would be the extension of the framework

to wetting problems, e.g. [36, 37, 38].

The strength of our methodology relies on its variational structure which allows

to derive analytical expressions such as adsorption isotherms at thermodynamic

equilibrium. These isotherms reduce in specific limits to the classical Langmuir

isotherm for instance and generalize existing ones by taking the interfacial location and

geometry into account. Our formulation also qualitatively validates relevant features

experimentally observed in [13] and [30] for instance, that is, decreasing interfacial

energies for increasing particle densities on the interface (Fig. 3 and Fig. 4) and the

three distinct regions characterizing the behavior of the surface pressure in dependence

of the interfacial area (Fig. 5), respectively.

In addition to these experimental agreements, we demonstrated the generality and

flexibility of our framework by studying systems of mixed particles and even systems

with fluid flow. This is a promising direction towards designing fluids with highly

tunable transport properties. For instance, one could characterize conditions (e.g. fluid

velocity, particle density, pressure, temperature, etc.) under which the particles are

trapped on the interface and hence be transported between two locations. This should

be of relevance in applications such as microfluidics and drug delivery.

These results offer a solid basis for the simulation and control of particle

adsorption in a wide variety of physical phenomena and technological problems. The

compatibility of our methodology with first-principle modelling strategies together

with the scale resolving multi-level discretization approach, provides a promising tool

to computationally exploiting complex particulate multiphase systems and their rich

nature.
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